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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

Because of the pioneering work by Berger 1929-1932, 1t became
possible to record the brain activity by means of electrodes externally
positioned upon the intact skull. The electrical activity in the cortical and
subcortical layers of the brain gives rise to a potential at the surface of the scalp
known as the electroencephalogram, or more simply, EEG. The EEG isa
recording of the electrical activity of the brain, obtained by placing electrodes
on vartous locations at the scalp. This activity may be due the collective
activity of many nerve cells (called neurons) in a small area in the outer surface
of the brain that is right under each electrode. When the potential in many
neurons are changed synchronously, they create rhythms of various types.

An international system, the so called 10/20 system, has been defined
for standardized symmetrical positioning of electrodes on the skull. To geta
simultaneous survey of the activity in different parts of the brain, the activity of
several electrodes is registered for 10 to 30 min by means of multichannel
recorder with usually 8 to 16 channels.

The EEG, turned out to be a useful tool for studying the functional
states of the brain, such as different states of wakefulness and sleeper met.abolic

disturbances, which, however, only emphasizes the importance of the EEG as a

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



noninvasive diagnostic tool in wealth of neurological disorders, e.g., epilepsy,
early diagnosis and localization of brain tumors. In additton, the EEG reflects
abnormalities related to cerebrovascular disorders, infection diseases as well as
metabolic endocrine disorders.

In the last few decades, progress has been made in extracting basic
knowledge about brain functions from the brain electrical signals, and in
developing clinical measures useful in diagnosing and treating several types of
patient groups. The mostly used technique for analyzing EEG records still
requires the visual examination and mental interpretation, with considerable
importance placed on the detection of the abnormal patterns that emerge from
the normal background. In most of these techniques, EEG recordings result in
long traces that are difficult to analyze and interpret.

Over the years, EEG analysis have been conducted primarily in clinical
settings, to detect the gross organic pathologies and the epilepsy. It have been
shown that the cortical EEG patterns to be modified by a variety of variables
which may or may not be pathological and as a result affect the EEG activity.
Alternation of these variables produces a large varety of electrical patterns
with different frequency and voltage characteristics. Therefore, this large
variation in the electrical activity has limited the interpretation of the EEG to
visual inspection by a trained electroencephalographer capable of
distinguishing normal activity from localized or generalized abnormalities of
particular types from relatively long EEG recorders. Thus, a complicating

factor in using the EEG 1s the subjectivity with which it is interpreted.
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Although much of the visual description has been standardized, not
more than 60-80% concordance between pairs of assessors has been reported.
This indicates that an objective method to quantify EEG characteristics could
be of great value. So, several attempts have been made to reduce the EEG to
more comprehensible form, many such methods have been developed for
clinical use and are being used with varying success (Daskalova, 1988;
Ferdjallah et al., 1996; Goel etal., 1996; Gvins, 1984; Isaksson et al., 1981;
Nakamura ef al., 1985).

Recently, a set of technical procedures involving the use of computer
terminology in the recording, processing and analysis of brain electrical
activity have been developed. In various forms these methods are referred as

computerized EEG.

1.2 COMPUTERIZED EEG ANALYSIS

Computerized signal processing permits measurement and quantification
of multiple aspects of brain electrical activity, thereby making available
tremendous amounts of objective, precise information that is inaccessible by
visual inspection of the EEG tracings. Computerized EEG analysis therefore
supports and extends the evaluation of brai_n electrical activity by providing
objective numerical data that can be used for graphical display, and
mathematical and statistical analysis. Thus, the major thrust of quantitative

EEG analysis was to produce an analytic equivalent of the expert neurologists
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visual assessment of strip chart tracing. The goals were to reduce the
subjectivity of human judgments and to increase productivity.

Thus, because of the large amount of information which is present in the
EEG signal, much of which cannot be adequately appreciated by visual
inspection of analog tracings of the activity. Mathematical analysis of EEG
tracings have been developed to provide correlations between
neurophysiological events and its mathematical representation of electrical
activity.

Improved method for quantitative analysis of signals of biological origin
might be developed if the biophysical process underlying the generation of
these signals were known in more detail. The use of parametric methods
including linear models for EEG analysis seems to imply that such knowledge
available.

Parametric modeling is a technique for time series analysis in which a
mathematical model is fitted to a sampled signal. If the model forms a good
approximation to the signals observed behavior it can then be used in wide
range of applications, such as spectral estimation, speech analysis, and feature
analysis for pattern classification problems.

The mathematical model that is most widely used 1s a rational transfer

function, the exact form of which is determined by estimating suitable values

for its parameters. If all these parameters lie in the transfer function’s
denominator then the model is termed an all-pole or Autoregressive (AR)

model, while an all-zero or Moving-Average (MA) model has all of its
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parameters in the numerator. A model with parameters in both the numerator
and denominator is termed as pole-zero or Autoregressive Moving-Average
(ARMA) model.

In this thesis, we will be concerned in studying the ARMA model as a
parametric method for representing and analyzing EEG signals. In the
biomedical field, ARMA models are found to be a powerful tool in modeling
and analyzing EEG (Cerutti ef al., 1988; Jansen, 1985; Korenberg et al., 1989;
Paarmann et al., 1987).

The ARMA modeling technique can be formulated either in the
frequency domain as a spectral matching problem or in the time domain as a
linear prediction problem. To analyze EEG using ARMA modeling, a linear
filter is given to describe thz generating process of EEG. This filter is fed with
white noise, and the output EEG signal has a spectral density depending upon
the properties of the linear filter. The statistical of this output signal can be
determined by using the regression of the signal upon itself. The linear
prediction technique predicts the current output from linear combination of its
past values and present and past values of the hypothetical input (Makhoul,
1975).

ARMA modeling have been successfully used for EEG signal analysis.
They are used for finding out the similarity between mathematical models and
biophysical models, for EEG segmentation and classification, and sharp
transient detection. Furthermore, they can also be used to estimate the power

spectrum of the EEG signals (Cadzow, 1982; Jansen, 1985; Kay et al., 1981).
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Thus, ARMA model represents a description of the EEG in a
convenient form. Since the EEG signals can be described by frequency-related
properties (rhythmic activities) which are called alpha, beta, and delta
activities, ARMA model is used for this purpose to represent the rthythmic
properties of the EEG signals. Its parameters have to be interpreted in terms
which are familiar to the neurophysiologist.

The major aspect of ARMA modeling in analyzing EEG is the spectral
analysis in which the EEG signals can be broken down into separate
components, each component having a different frequency (Kay, 1988; Marple,
1987; Smith er al., 1986). This decomposition of the waveform results in a
frequency spectrum, which yields a distribution of amplitudes as a function of
frequency for a given sample of EEG data. Therefore, the ARMA model 1s
used to analyze the EEG signals leading to an estimation of the power spectral

density of the signal.

1.3 THESIS CONTRIBUTIONS

In this thesis, the ARMA model is used to provide a quantitative
analysis for the EEG signals. Utilizing the ARMA model, the following are
achieved according to the EEG signals:

1- Data reduction and feature extraction. The EEG signals are
represented with limit numbers of parameter using the ARMA model. We are
interested in finding the suitable model order which can represent the EEG

signals efficiently. This purpose is achieved by a new method for order
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estimation designated as Eigenvalue method (EV). This method is found to be
superior to the previous methods. Utilizing this method it is found that the
ARMA model can represent different types of simulated EEG signals with
model order less than that which is required by the AR model to represent the
same types of the EEG signals.

After estimating the suitable ARMA model order to represent the EEG
signals, the parameters of the ARMA model are interpreted in such away that
an important features , namely, frequency, bandwidth and power , that
characterize the EEG signal are extracted from them using the Spectral
Parameter Analysis (SPA) technique.

2- Estimating the Power Spectral Density (PSD) of the EEG signal.
Using the ARMA model, it is possible to derive the PSD of the EEG signal
efficiently from its parameters. In some cases, and due to the mixed-phase
nature of the EEG signals, an inaccurate power spectral estimation is obtained,
since some of the zeros of the ARMA model lie outside the unit circle. This
problem has been solved by firstly converting the EEG signal to a minimum
phase one by means of homomorhpic deconvolution then applying the ARMA
model on the resulted signal to obtain the power spectral density. In this way an
accurate power spectral estimation is achieved using the ARMA model.

3- Spike detection. It is found that the ARMA model can be used to
detect EEG nonstationanties such as spikes when using it in the inverted form

as a linear prediction error filter. The spikes are appeared in the error signal at
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the output of the prediction error filter and they are detected using special

thresholding technique.

1.4 THESIS OUTLINE

This thesis aims at analyzing the EEG signals using the ARMA model
as a parametric method. The outline of the thesis is as follows:

In Chapter 2, a general background of the EEG signals and its important
characteristics is presented. In Chapter 3, the general concepts of the ARMA
modeling are discussed. A general description about the ARMA process; its
generation, the techniques used to estimate the model parameters, the
estimation of the power spectral density, and the use of the ARMA technique in
modeling both the stationary and the nonstationary signals are given in this
chapter. This chapter also includes new approaches dealing with the ARMA
models. It involves, a new method for ARMA order estimation based on
eigenvalues of the covariance matrix. Besides, a new ARMA model dealing
with systems with multiple inputs and delays is developed. At the end of this
chapter, a technique for simulating EEG signals is presented.

In Chapter 4, the application of the ARMA modeling in analyzing the
EEG signals is discussed. It shows how the important features of the EEG
signals can be extracted using the ARMA model by means of spectral
parameter analysis. A method for applying ARMA spectral modeling of the
EEG in combination with homomorphic filtering is also considered in this

chapter. This method models the minimum phase equivalent signal of the
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EEG. Furthermore, this chapter includes a method that utilizes the ARMA
model in detecting spikes. Spikes are described as sharp waves or transients
present in a slowly varying background signal. This method uses the ARMA
model in the inverted form to produce a linear prediction error filter to use 1t as
spike detection technique.

Finally, the main conclusions that have been obtained from fhe
simulation results of the various techniques presented in this thesis are

summarized and discussed in Chapter 5.
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CHAPTER 2

CONCEPTS OF EEG SIGNALS

In this chapter, the important characteristics and the basic concepts of
the EEG signals are presented. The contents of this chapter were summarized
from several texts (Binnie efal., 1982; Cooper et al., 1980; Daly et al., 1990;
Henry, 1980; Hughes, 1982; Tyner efal., 1983). This chapter is presented to
provide the reader with the minimum amount of information on the basic EEG
principles that enables him/her to make a reasonable background about the

EEG signals.

2.1 EEG TERMINOLOGY

The discovery that it was possible to record the electrical activity of
brain cells, the EEG, through the intact scalp of the human being appeared to
offer fascinating possibilities for understanding how the brain works in healthy
and/or sick human being. EEG is arecording of the electrical activity of the
brain generated by the cell membranes of every living tissue.

The EEG consists of changing potential difference between one region
and another of the scalp, these are generally of low amplitude. The activity
recorded differs from one region of the scalp to another and it is therefore
necessary, to record simultaneously from 20 or more electrodes distn'huted

widely over the head.
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The well-known 10-20 international system of electrode placement is
used for this purpose. The resulting electrical activity from the electrodes
describe the EEG signals of the brain in the various locations of the scalp. Each
scalp location has a certain name as seen in Fig. 2.1(a). As a result, the
electrodes have identifying names according to thetr position on the scalp:
those on the left side have odd numbers, those on the right have even numbers,
those near the midline have smaller numbers, and those more lateral have
larger numbers.

The name includes the first letter of the general area where the electrode is
placed. This is obvious in Fig. 2.1(b).

For descriptive purpose, the EEG signals may be divided into ongoing
‘background activity’ and episodic events or ‘transients’ which appear
suddenly and are of relatively short duration. Thus, the analysis of EEG should
be systematic process involving a series of orderly steps to characterize the
electrical activity of the brain in terms of specific descriptors and
measurements. Therefore, the EEG activity is described in terms of several
characteristics, each of which must be considered in relation to the patient’s
age and state. The expression state refers to the patient’s level of
responsiveness (e.g., relaxed, awake, asleep and so on). These characteristics

arc
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@ Frontal Frontal ®
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(a)

Fp 1,2 = prefrontal T3,4 = mid-temporal
F3,4 =frontal T5,6 = posterior temporal
C3,4 =central Al,2 = ear (or mastoid)
P3.4 =parietal Fz = front vertex
01,2 = occipital Cz = central vertex
F7.8 = anterior temporal records rhythms Pz = parielal vertex
from that general region but placed (note: z = zero)
on frontal bone

(b)

Fig. 2.1 (a) Different locations on the scalp and their corresponding names.
{b) Position of the electrodes on the scalp.
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1- Frequency:

Frequency refers to rhythmic repetitive EEG activity in Hz or the equivalent
frequency of isolated single waves. Three terms are used relative to the
frequency:

a) Rhythmic: EEG activity consisting of waves of approximately constant
frequency.

b) Arrhythmic: EEG activity in which no stable rhythms are present.

¢) Dysrhythmic: 1t refers to rhythms and/or pattemms of EEG activity that

charactenistically appear in sick groups and rarely appear in healthy group.

2- Voltage:

When stating the amplitude (voltage) of a thythm or other component, it is
usual to refer to the peak-to-peak value in pV. In a given record one is more
often concerned with the relative amplitudes either of one component with
respect to another, or of one channel with respect to another. Three terms
relating to the voltage are:

a) Attenuation. Reduction of amplitude of EEG activity resulting from
decreased voltage. When activity is attenuated by stimulation, it is said to
have been ‘blocked’.

b) Hypersynchrony: Seen as an increase in voltage and regularity of rhythmic
activity.

c) Paroxysmal: Activity occurring with sudden onset and termination and

showing higher amplitude than the background.
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3- Waveform:

It refers to the shape of the signal. The shape of a wave of an EEG activity
1s determined by the frequencies that combine to make up the waveforms and
by their phase and voltage relationships. There are several terms associated
with the waveform and they are:

a) Monomorphic: Distinct EEG activity appearing to be composed of one
dominant frequency.

b) Polymorphic: Distinct EEG activity composed of multiple frequencies that

combine to form a complex waveform.

¢) Sinusoidal: Waves resembling sine waves.

d) Transient: An isolated wave or pattern that is distinctly different from
background activity. Two terms relating to transient are:

1. Spike: a transient with a pointed peak and a duration from 20 to 70 msec.
il. Sharp wave: a transient with a pointed peak and a duration from 70 to
200 msec.

e) Complex: A sequence of two or more waves, not necessarily of the same
frequency, with distinct form or pattern from background activity, for
example:

i. Spike-and-wave complex.

ii.  Sharp-and-slow-wave complex.
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4- Quantity:

Quantity refers to the amount of a particular type of EEG activity with
respect to percent time present and/or to voltage. Four terms are related to the
quantity are:

a) Continuous: Occurring without interruption. This term implies lack of
marked frequency or voltage changes.

b) Discontinuous ( or intermittent): Refers to patterns where there are changes
of frequencies/voltages in the time domain appearing from time to time.
The term carries only a descriptive message. In practice, several EEG
patterns fall within this category.

¢) Regular: Refers to the smoothness of the envelope of the waxingand

waning of voltage that the EEG activity typically shows.

5- Location:
Location refers to scalp distribution of EEG rhythms or patterns, it implies
cerebral location. Terms relating to the location are:
a) Generalized: Not limited to a specific area.
b) Lateral: Coming from one side, it is sometimes described as asymmetrical.
c) Bilateral: Coming from both sides, it is sometimes referred to as
symmetrical.
d) Focal: Coming from a local area.

¢) Symmetry: Equal distribution of EEG activity over homologous head areas.
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6- Reactivity:
Reactivity refers to the reaction of the EEG to stimulation, stimulus-
related change in morphology (waveform), and various physiological changes

such as eye opening, mental calculation and movement.

7- Synchrony:

Synchrony is the simultaneous appearance of rhythmic or
morphologically distinct patterns over different regions of the head, either on
the same side or on both sides.

From the above discussion, we can say that the features of the EEG
signals may be classified into waves, activities, thythms and complexes, and
that each feature should be described interms of its frequency, amplitude,
quantity, waveform and reactivity. A cursory glance through a small selection
of EEG records will show that they contain components of three i:asic kinds:
those that are fairly continuous and very often rhythmical, those that are
transient and those that comprise the background activity, upon which the two
preceding kinds are superimposed, either singly or together. Whilst background
activity may be broken down by analysis into a spectrum of many frequencies
which may be of clinical significance, a statement of frequency can be usefully
made only of regular repetitive phenomena of which at least two complete
cycles are present. Transient discharges are better described in terms of their

duration and waveform.
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As a matter of convenience, the EEG frequency spectrum is divided into
bands that are designated as follows:
Delta (6): less than 4 Hz.

Theta (6): from 4 Hz to less than 8 Hz.
Alpha (e): from 8 Hz to 13 Hz.
Beta (f): more than 13 Hz.

Strictly speaking, these terms should be reserved for rhythmical
discharges, but they are also used to describe irregular, non-rhythmical activity,
the basic frequencies of which fall into a particular range. In general, they may
be used mrespective of where the activity in question occurs. The only
exception is the term alpha rhythm which refers to a particular phenomenon.

EEG signals are sometimes described as fast or slow, these terms imply
that their dominant frequency 1s respectively above or below the alpha range. A
polyrhythmic record is one in which two or more clear rhythmic components
are present, whereas the term polymorphic refers to irregular activity the

individual waves of which are of variable period.

2.2 NORMAL VERSOUS ABNORMAL EEG ACTIVITY

The goal of clinical EEG is to make a useful diagnostic evaluation of
particular pattent. Because the technologist views the ongoing EEG activity as
it is recorded, it is essential that he/she becomes familiar with and recognize the

major features that appear in the ongoing record. On the basis of the features
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that do or do not appear, the recorded EEG signals may be classified as normal

or abnormal EEG signals.

Normal EEG activity is any of the many kinds of distinctive activities
that, qualitatively and quantitatively, appear in EEG signals of healthy groups
of persons known to have no complaints, no neurological or other diseases.
Abnormal EEG activity is that one which appears in groups of persons defined
by specific complaints or specific neurological disease and does not appear in
the healthy group.

To understand and recognize the pathological features, one must first get
to know the normal patterns and their variability. The EEG changes
continually, both in random manner, in association with changes in mental
activity and with drowsiness or sleep. It also changes gradually over the
lifetime of the individual and shows marked difference between one person and
another. In adults, the limits of normal variation may be learned with no great
difficulty, but in children the patterns are more varied. Because the EEG
signals of the adults are the least complex in terms of variability from person to
person, in both the waking and sleeping states, we will emphasize on EEG of

the adults in these two states.

2.2.1 FEATURES OF THE NORMAL EEG

Before the various features of the normal EEG of adults are described, it
is important to recognize that the identification of a particular activity or

phenomenon may depend on its reactivity. An important element of the
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recording and its analysis is the testing of the reactions, or responses, of the
features of the EEG to various physiological changes. These include eye
opening and closing, repetitive movements of exterminates and sensory
stimulation.

Normal EEG rhythms are found at different ages of the patients and also
under different conditions. Usually, there is one dominant frequency, one
which is the most prominent or obvious in the record, and this is called the
‘background rhythm’:

e Background rhythm in wake is equal to 8-10 Hz in adults (alpha rhythm).

e Background rhythm in sleep is equal to 5-6 Hz in light sleep (theta
rhythm) and 2-3 Hz in deep sleep (delta thythm).

Background rhythm can be considered as a general indication of the

excitability of the central nervous system. It has the following features:

1) Alpha rhythm:

The most easily recognized activity in the waking EEG of the normal,
relaxed adult whosé eyes are closed is the alpha rhythm, prominent in the
occipital regioh. It has a frequency ranging from 8 to 13 Hz, but averages 10
Hz. The average alpha voltage falls between 20 and 60 pV.

Alpha activity is usually rthythmic and is sometimes referred to as
sinusoidal. This does not mean that an alpha wave is a sine wave, it only means

that it resembles a sine wave.
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Alpha rhythm may be entirely suppressed ‘blocked’ or at least
attenuated when the subject opens his eyes. Alpha blocking is also produced by
mental arithmetic and other task. Nevertheless, in most clinical contexts, when
recording from conventionally spaced scalp electrodes, it suffices to regard the
alpha rhythm as monorhythmic, although its frequency may be observed to
vary about the mean by + 0.5 Hz in normal persons.

A characteristic of the occipital alpha rhythm is that it may show what
seems to be abrupt phase reversals, so that the result wave or waves have a
frequency of half that of the ongoing alpha activity and in some instances have
a greater amplitude. This concept is called alpha variants and refersto a
mixture of an alpha rhythm and another rhythm that is usually half the
frequency of the alpha rhythm, in this case it is called slow alpha variant. The
slower activity is dominant, so that the typical alpha appears superimposed on
it. In cases, less commonly alpha rhythm is replaced by activity within the beta

frequency band and produce what is called fast alpha variant.

2) Beta rhythm:
Beta activity is defined as activity with a frequency higher than 13 Hz.
Classically, it refers to more or less rhythmic activity in the 18 to30 Hz

frequency range. The voltage is not over 20 uV. It is present in nearly all

normal persons.
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On the basis of observed distributions and reactivity of beta activity, it
has been inferred that there are three types: a) generalized, b) precentral, and
c) posterior. It 1s commonly seen in the frontal and central regions.

Beta activity, particularly the generalized type, 1is bilaterally
synchronous. Central beta activity may show symmetric features, and it may be
reactive to movement-generated and stimuli, attenuating coincidentally with

voluntary movement.

3) Theta rhythm:

Theta activity includes frequencies between 4 to 8 Hz. In the normal
awake adult, small amount may appear 1n the central, temporal, and parietal
areas, but it rarely is rthythmic. Its voltage is less than 15 pV. Theta activity
in the temporal area is likely to be reduced by eye opening and may be quite
asymmetrical, and that in the central areas are usually uninfluenced by eye
opening but are enhanced during drowsiness. If the amplitude of the theta
activity exceeds alpha amplitude by 50% or more, it may have pathological

significance.

4) Delta rhythm:
Delta activity consists of rhythmic components below 4 Hz or isolated
waves of more than 250 msec duration, it is not a usual feature of the awake

adult EEG. Small amounts of delta activity may, however, be seen over the
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posterior temporal regions in young adults and represent the persistence of
component which 1s conspicuous in childhood.

Sometimes delta activity is found superimposed with activity to form a
pattern or a complex that resembles sharp-and-slow-wave activity., These
waves are maximal in the posterior region with an amplitude ranging from 75
to 150 pV. These waves are often bilateral but asymmetric with greater
amplitudes over the right hemisphere. Therefore they are called posterior slow

waves. This phenomenon 1s not pathologically significant.

S) Mu rhythm:

The mu rhythm, a central thythm of alpha activity frequency in which
the individual waves have an arch-like shape, is present as a visually detectable
rhythm in young adults. Its frequency is about 9 Hz but may range from 7 to 11
Hz. The voltage characteristics of the mu rhythm resemble those of the
occipital alpha rhythm and are usually less than 100 pV.

Although the frequency may be within the alpha range, it is not an
alpha rhythm. This is because its distribution is different and it has a unique
reactivity. It does not block with eye opening but typically is blocked by
movement or by tactile stimulation.

The mu rhythm may be either bilateral or unilateral. If bilateral, it often
occurs in independent runs on either side of the scalp. It is commonly
asymmetric i amplitude, but when present bilaterally it should have ropghly

the same frequency in both sides of the scalp.
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6) Lambda waves:

Lambda waves are sharp waves with an equivalent frequency of 4 to 6
Hz and amplitude up to 20 puV. They occur in the occipital areas, but
sometimes they may extend into the parietal regions. These waves are best seen
when the person is actively engaged in looking at something that arouses
his/her interest. They are not seen when the person’s eye are closed.

Lambda waves have a waveform that is saw-toothed rather than spike-
like, and the initial positive phase may be preceded and sometimes followed by

a smaller one of opposite polarity.

7) Normal EEG activity in sleep

Dramatic events take place in the EEG when a person’s state changes
from relaxed waking activity to what is loosely called sleep. These events
occur beginning with the wake state and continuing through the stages of
sleep. During sleep the EEG follows a very constant pattern and the depth of
sleep is classified on the basis of the EEG. There are five distinct sleep stages

that can be identified as follows:

Stage 1:

Stage 1 usually called drowsiness. It is characterized by a decrease in
voltage of the alpha rhythm in such a way it often disappears (attenuates) and
then reappears several times during the initial period of drowsiness. Besides, a

series of surface positive transients may emerge.
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Stage 2:

As sleep continues to deepen in stage 2, the next distinct change
involves appearance of 2 new 11 to 15 Hz rthythm (typically 14 Hz), which has
a predominantly central vertex distribution. This activity appears in spindle-like
bursts of rhythmic waves, which first increase, then decrease in voltage. Hence,
they are called sleep spindles. The voltage of spindles may range up to 150 pV,
although it is usually between 20 to 100 pV when measured in the central

areas.

Stage 3:

Stage 3 differs quantitatively from stage 2. Delta activity below 1 Hz
and greater in amplitude than 100 pV is present 20% to 50% of the time. Sleep

spindles typically persist in this stage, although to lesser degree.

Stage 4:
In this stage, delta activity is present more than 50% of the ttme, with
voltage greater than 75 V. In addition, sleep spindles are present with slower

frequency (e.g., 10 Hz rather than 14 Hz).

Stage 5:
This stage of sleep is defined not only by a change in EEG background

activity, but also by the concomitant appearance of rapid eye movements
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(REM). Hence, this stage is called REM sleep. The background activity has a
variable appearance but typically is made up of theta and alpha components of

low amplitude, sometimes with central theta bursts.

2.3 ABNORMAL EEG ACTIVITY

As indicated in the previous section, the normal EEG changes with age
and with state of awakeness and in any case the limits of variation are broad.
Abnormalities may appear as changes in the composition of background
activity or as transient phenomena and may be generalized, unilateral or focal
over a small region of the scalp. We previously stated that a definition of
abnormal activity involves a comparison of EEG characteristics observed in
groups of patients with neurological or other disease with those of healthy
groups.

For an EEG to be considered abnormal, one or more of the following
must be met:

1- The frequencies of basic rhythms are either faster or slower than that in the
healthy groups. Sometimes normal rhythms are slowed or replaced by
activity of lower frequency, this change may be diffused or localized. For
instance, the alpha rhythm is replaced by rhythmic sinusoidal activity in the
upper theta range.

2- The voltage of a particular EEG activity is either higher or lower than that

in the healthy groups.
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3- The locations of the various EEG activities are different than those in the
healthy groups. As the normal EEG is fairly symmetrical, unilateral or more
localized depression of normal activities is easily recognized and is one of
the most reliable EEG signs of disease.

4- Unusual distinctive elements with a periodic character may appear such as

slow waves and spike which are described in the following:

a) Slow waves: They are rhythms, appearing especially during
wakefulness, that are slower than in the normal. Thus, an adult should
not have theta or delta patterns in the waking record and if they
appear, they are called slow waves abnormalities. Usually, the slower
the frequency and the more often it appears, the greater the degree of
abnormality. Abnormal slow waves appear when the brain cells are

damaged.

b) Spikes (or sharp waves): The spike (or sharp wave) is a suddenly
appearing (pmoxysﬁﬂ) electrical explosion. The sharp wave is the
same as the spike except for a difference in the duration of the event.
Spikes are shorter in duration, usually less than 70 msec, while sharp
waves last from 70 to 200 msec. These two related patterns usually
signify an epileptogenic region of the brain and are found in patients

with seizures. Another pattern related to the spike is the spike-and-
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wave complex which consists of a spike followed by a wave. These

complexes usually repeat themselves.

5- Loss of reactivity to stimulation occurs or an untypical response occurs.

Throughout the summarized description of the basic EEG concepts
discussed above, it is noted that the EEG signals are described by an important
characteristics which, in turn, reflect the normality and the abnormality present
in a person. It was found that the most important of these characteristics are
the amplitude, the frequency and the shape of the EEG signals.

Knowing these important features, one must determine how to estimate
them efficiently. The amplitude (or indeed, the power) and the frequency are
most easily estimated by the spectral estimation techniques, while the third
characteristics can be determined using a special techniques. It is the aim of the
next two chapters to produce techniques which can be used to achieve this
purpose. Thus, the next chapter will be devoted for introducing an efficient
method for describing the EEG signals. It is concerned with the analysis of the
ARMA model through its various applications such as the power spectral
estimation which 1s an important field in EEG analysis. Besides, the important
morphylogical shape that is, the spikes, can Vbe determined by utilizing the

ARMA model as will be shown in the Chapter 4.
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CHAPTER 3

ARMA MODELING

Extensive researches have been done in the field of EEG analysis. All of
these researches shared the following interests which also serve to be the
logical steps of any computerized EEG analysis system:

First, because of the large amount of data involved, there was an interest
to replace the mass of original data by a small number of descriptive
characteristics, that is, a big interest was lying in the reduction of data. Next,
from the reduced data, one must easily find estimates of the true value which
describe the EEG. Since the EEG signal shows certain periodicities (sharp
resonance) accompanied by some randomness, it was of interest to detect the
presence of position and strength of the different resonances, known as
rhythms. Therefore, the basic interest was in describing the spectrum ina
simple mathematical manner that would yield the characteristics of the
different rhythms. Thus, the first step in EEG signal analysis is to construct a
mathematical model which is sufficient to describe them.

Generally, methods for the analysis of EEG may be conveniently
classified in two board categon'és, namely, the parametric and the
nonparametric methods. The latter makes only general assumptions about the

process that generates the EEG signal, essentially stationary during' short
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interval. Parametric analysis is, in one sense, more specialized and, in another

sense, more general.

3.1 PARAMETRIC REPRESENTATION OF EEG SIGNALS

Parametric analysis assumes that the EEG signals may be represented by
means of a stochastic model involving specific parameters. Most often linear
models have been used. With fixed parameters and appropriate conditions
satisfied, the model will describe a stationary process or rather a class of such
process. However the class may be generalized by allowing the parameters to
vary with time. In this way nonstationary properties of the EEG signals may be
taken into account,

To analyze an EEG signal by parametric methods, a linear filter is given
to describe the generating process of EEG. This filter is fed with white noise,
and the output EEG signal has a spectral density depending upon the properties
of the linear filter. The statistics of this output signal can be determined by
using the regression of the signal upon itself. The linear prediction technique
predicts the current output, y(n), from linear combination of past outputs and

inputs, x(7), as shown below

? q 3.1
V) = =3, yn=R)+3 bx(n k) G-

where a; and b; are the parameters of the hypothesized system with model
order (p,g). Equation (3.1) is the general Autoregressive Moving Average

ARMA model. Several algorithm have been developed for system
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identification using ARMA modeling (Cadzow et al., 1986; Pillai et al., 1993;
Politis, 1993).

ARMA model is considered to be a powerful mathematical method for
time series analysis. It has the advantage of an immense data reduction,
because it based on a few parameters in representing the signal. It has been
successfully used for various applications such as prediction in the time
domain, parametric spectral modeling, feature extraction and detection of the
abrupt changes in the modeled signal. It is obvious by now that the ARMA
model is a predicive model. It gives an explicit parametric representation of
the signal, from which mmportant properties of the data, such as the spectral
density can be computed as a function of the model parameters.

In all the algorithms that will be developed in this chapter, it is assumed
that the continuous-time signal y(t) is sampled to obtain the discrete-time
signal y(nT), where » 1s an integer and 7 is the sampling interval with a
corresponding sample frequency f; = 1/T, which achieves the Nyquist criterion.

We shall abbreviate y(nT) by y(n) with no loss of generality.

3.1.1 ARMA MODELS

In this section, we demonstrate that a wide-sense stationary random
process may be represented as the output of a causal and causally invertible
linear system excited by a white noise process. The condition that the system is
causally invertible also allows us to represent the wide-sense stationary random

process by the output of the inverse system which is a white noise process.
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Many discrete-time random process encountered in practice are well
approximated by a rational transfer function model. In this model, an input
driving sequence x(n) and the output sequence y(n) that is used to model the
data are related by the linear difference equation (3.1). This most general linear
model is termed an ARMA model and shown in Fig. 3.1(a) with order (p,g).

Equation (3.1) says that the output y(n) 1is a linear combination of past
outputs and present and past inputs. That is, the signal y(n) is predictable from
linear combinations of past outputs and inputs. So, the signal is modeled as a
linear combination of its past values and present and past values of a

hypothetical input to a system whose output is the given signal. Thus, if y(n)1s

an estimate of y(#), then the prediction sequence is given by

y(n) =—i&ky(n—k) +i5kx(n_k) (3.2)

where 4@, and b, are the estimated model parameters.

Processes that can be approximated by rational transfer functions are
quite common in nature. In ARMA model, the numerator of such function is
referred to as the Moving Average (MA) part and expresses the contribution of
the ¢ most recent values of the input driving sequence (generally assumed to
be white noise). The denominator or the Autoregressive (AR) branch reflects
the functional relationship between p previous observations of the process and
its most recent one. Thus, if all the a; coefficients (except ap=1) vam's;h for the

ARMA parameters, then
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Fig. 3.1 (a) ARMA model of a random process.  (b) MA model of a random process.
(c) AR model of a random process.
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q 3.3
)= bx(n—k) -3

and the process is strictly a Moving Average (MA) process of order g. This
model is sometimes termed an all-zero model and shown in Fig. 3.1(b).
If all the b, coefficients (except by =1) are zero in the ARMA

parameters, then

y(n)= _z”: a,y(n—k)+x(m) (3.4)

P
and the process is strictly an Autoregressive {AR) process of order p. This
model is sometimes termed an afl-pole model and shown in Fig. 3.1(c).

It is important to distinguish between the driving noise of the model x(n)
and any observation noise. The ARMA model noise is not an additive or
observation noise which is typically encountered in signal processing
applications. x{77) is an innate part of the model and gives rise to the random
nature of the observed process y(n). Any observation noise then needs to be
modeled within the ARMA process by modification of its parameters.

Therefore, the time series y(n) is said to be ARMA process of the order
(p.g) if 1t 1s generated (or can be modeled) according to the recursive
relationship in (3.1) in which the excitation sequence x(#) is white noise
process. In the z-domain, the system function H(z) between the input x(n} and

the output y(n) for the ARMA process in (3.1) is the rational function

s 2

= (3.5)
A(z) 1+iakz"‘ .
k=1

H(z)=
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For the model to be stable, it is required that the polynomial

Az) = 1T+a; 20 + .. +a,z”
have all its roots inside the unit circuit. If the polynomial

Bfz) = by + bzl + .. + byz?
have all its roots inside the unit circuit, then the model is minimum-phase and
therefore invertible. If these conditions are achieved then, the output of this
filter to white noise input sequence x(n) is stationary random process y(n).
Conversely, the stationary random process y(n) may be transformed into a
white noise process by passing y(n) through a linear filter with system function
I/H(z). We call this filter a noise whitening filter. Its output, denoted as x(n), is
called the innovations process associated with the stationary random process

y(n). These two relationships are illustrated in Fig. 3.2.

The prediction error e(n), or the residual, will thus be defined by the

following difference equation

X ’, 0 (3.6)
e(n) = y(n)— y(m) = y(n) + 2" a, y(n—k) =D b x(n - k)
k=1 k=0

In this formulation the residual may be considered as either the output of the
prediction error filter A(z)/B(z) which 1s also known as the inverse filter, or as
the excitation signal of the ARMA model H(z).

Given that the model 1is suitable one, therefore an estimate of the
parameters of the model is required. The key to the performance of parametric
modeling lies in the relative effectiveness of the various algorithms that can be

used to estimate the model parameters.
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Fig. 3.2 Filter for generating (a) the random process y(n) from white noise x(n) and (b) the
inverse filter.

3.2 ARMA PARAMETER ESTIMATION

The classical modeling problem is that of identifying the system’s a; and
b, parameters from a finite set of observations of the excitation and the
response time series. The basic approach for calculating these parameters is to
adopt a certain error criterion for the perfectness of fitting of the ARMA model
to the set of data samples. The least squares (LS) criterion was chosen for this
formulation due to its stability and physical meaning (Cadzow et al., 1986).

In general, an ARMA filter is produced by cascading an AR filter with

MA filter as shown in Fig. 3.3 (a). Although quite simple, the structure shown
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Fig. 3.3 (a) ARMA filter construction and (b) construction of residual sequence.

above 1s used extensively in various parameter estimation algorithms which
generally estimate the AR and MA parameters separately. The normal method
is to generate the AR parameters first, use these parameters to generate a
residual time-series, and then calculate the MA parameters. Thus, if y(#) is an
ARMA time-series and the AR filter is defined as I/4(z), then the residual
time-series e(n) can be produced by passing y(n) through A(z) as shown in Fig.
3.3(b). The sequence e(n) corresponds to a moving average sequence because
the AR component in the original signal has been filtered out. Therefore, the
MA parameters of the origin signal are determined using e(n) in the MA

algorithm.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



37

Before describing methods for estimating the parameters in an
ARMA(p,q) process, It 1s useful to establish the basic relationship between the
model parameters and the autocorrelation sequence.

For a parametric model with a rational transfer function, a basic
relationship exists between the autocorrelation sequence r,(1) and the
parameters a; and b, of the linear filter H(z) which generates the process by
filtering the white noise sequence x(n). This relationship may be obtained by
multiplying the difference equation (3.1) by y'(n-m), where * is the conjugate
operator, and then taking the expected value of both sides of the resulting

equation. Thus, we have

B0y (r-m)] = = Y a, =Ry (1= m 3 By lxn- By (-m)] - (.7)

Hence,

ryy(m)=~iakrw(m—k)+zq:bkrﬂ(m_k) (3.8)

where 7, (m) 1s the cross correlation function (CCF) sequence between x(n)

and y(n). The cross correlation is related to the filter impulse response. That is,

_ - } ) 3.9)
1 (m) = E[y" (mx(n+m)] = E| 3_h(k)x"(n—k)x(n+m) | = o *h(~-m)
=0

where in the last step, we have used the fact that the sequence x(») is a white
noise with variance o*. Hence,

i m >0 (3.10)
Toa () = {O‘ hi-m) m<0

By combining (3.10) with (3.8) we obtain the desired relationship
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[ p
- > ar, (m-k) m>q
k=1

P g-m
r.(m=<-Y ar (m-ky+c*» h(k)b,, 0sms
» ko k+m q
=1 &0 (3.11)
r,, (=) m<0

This relationship in (3.11) applies in general to the ARMA process.
It should be noted that the relationship between the iaarameters of the
ARMA process and the autocovariance function (ACF), ry,(m), is nonlinear.

Given the ACF, we must solve a set of nonlinear equations to find the model
q-m

parameters. This is due to the >" A(k)b,,, term.
k=0

For an AR process (3.11) simplifies to

[ »
> a,r, (m-k) m>0
k=1
P
r,(my=4-Y ar, (m-k)+o’ m=0
= (.12)
r,, (-m) m<0

Thus, we have linear relationship between 7, (m) and the a; parameters. These

equations, called Yule-Walker equations, may be expressed in matrix form

r,© r, ) r,(=2y - r,(Gp) |1 o’
r,(p) r,(p-1) r (p-2) --- 1,0 [a, 0

Equation (3.11) is useful for the ARMA process if one knows r,, (m). In this
case, it allows one to find the ARMA parameters from 7, (m) and r,_(m) by

solving a set of linear equations.
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After establishing the relationship of the model parameters and the
correlation sequence, the model parameters can be estimated. The parameters
of the ARMA model can be calculated in many ways. They can be estimated
efficiently using the Modified Yule-Walker Equations (MYWE) method
(Bruzzone et al., 1984; Jacobs et al., 1989; Kay, 1988). Although the ARMA
process can be modeled by maximum likelithood techniques that minimize a
nonlinear function, it has been shown that it is not the best method in practical
applications (Kay, 1988). Therefore, in the next section, the MYWE method
will be discussed in which the AR parameters are estimated directly by solving
the set of linear equations that are given in (3.11) fork =g+1, q¢+2, ..., p~q. To

find the AR parameters we need to solve

1y (4) ry(g=1) e r(g-p+1) | q r,(g+1)
r},,(qzﬂ) r,ys(q) rw(q—ip+2) az _ r,,,(q:+2) (3.14)
rplg+p-1) r,(g+p=-2) 7. (q) a, r, (g + p)

These equations have been called the extended or modified Yule-Walker

equations.

3.2.1 MODIFIED YULE-WALKER EQUATIONS (MYWE) METHOD

The ARMA estimation method described in this section uses the
modified Yule-Walker equations (3.14) described above. Since these
relationships hold when the ACF is known exactly, a reasonable approach is to

replace the theoretical ACF samples by estimates and then solve the equations
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for AR parameters. The MA parameters are found in a separate step. This leads

to the following estimation of the AR parameters:

r(q) ry(q-1) f,(g-p+l) | 4 r,(q+1)
Fw(‘{_'_l) F”,:(q) Fw(q—:p+2) a, _ Fw(q:r+ ) (.15)
Fg+p-1) Flg+p-2) -  Fl(9 |4, 7,,(g+P)
From which we obtain the system
(3.16)

—- P
A(z) =1+ Z:ari,:z"r
&=

Once the AR parameters have been estimated and y(n) filtered by A(2)

to produce the approximate MA process, many methods may be used to

estimate the MA parameters. Here, the Durbin’s method for estimating the MA

parameters is used which is given by

b=-R.F, (3.17)
where
_ 1 L-li-gl
Raa lj = L_:l- £ akak+:—] z j = I’ 2’ q
[ ] 1 Li-ji
r | =—— a.d,.. i=],2,...,
raa f L -1 kzzlakafrﬂ q

and g <L <N. The &, parameters are obtained by solving the MYWE.

The MYWE can be solved in an efficient manner using an extension of

the Levinson recursion (Kay, 1988). The recursive algorithm is given by:
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rw(q-f-l)
: 1 — e
="
r,(g-1)
b(1)=-
® r,(q)

o, ={1-a,)b 1), (q)
Main Loop:

for k=23 ..,p

k-1

r, (g +k)+ 2 a,, (mr, (g —k-m)
a, (k)=- 7l o

a,()=a, () +a, (b, (k—-i)  i=12,.. k-1

If & = p, exit; if not continue

k-1

ry(q—k)+ 3 b (Dr, (g -k —m)
bk(k):_ m=lp

b (N=b_)+b,(k)a,_,(k-i) i=12,..., k-1
P = A~a (k)b (k)p,_,

Thus, in this way, the ARMA parameter estimation is accomplished.
With the background established above, we will now describe the power

spectrum estimation method for the ARMA(p,g) process.

3.3 POWER SPECTRAL ESTIMATION

The major aspect of ARMA modeling in analyzing EEG signals is the
spectral estimation, from which valuable features of the EEG signals can be

extracted. Generally, the EEG contains information regarding changes in the
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electrical potential of the brain obtained from a given set of recording
electrodes. These data include the characteristic waveform with its variation in
amplitude, frequency, phase, etc. Any analysis procedure cannot
simultaneously provide information regarding all of these variables.
Consequently, the selection of any analytic procedure will emphasize change in
one particular variable at the expense of the others. Power spectral analysis (the
square of frequency spectra) provides a quantitative measure of the frequency
distribution of the EEG at the expense of other details in the EEG such as the
amplitude distribution.
In the context of modeling, spectral estimation is a three-step procedure.
e Select an appropriate model.
e [Estimate the parameters of the assumed model using the available data
samples.
o Obtain the spectral estimates by distributing the estimated model

parameters into the theoretical PSD implied by the model.

As defined earlier, the transfer function of the ARMA model is given by
equation 3.5. It is well-known that the z-transform of the ACF at the output of a
linear filter, p,,(z), is related to the input p..(z), as follows

BB /), @ (3.18)

PW(Z)=H(Z)H'(1/Z')PH(Z)=A(Z)A.(”z.) -

when (3.16) is evaluated along the unit circle, z = exp(j2xf), it becomes the

PSD p,(f). Often the driving process is assumed to be a white noise sequence
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of zero mean and variance ¢°. The PSD of the noise is then o°. The PSD of the

ARMA output process becomes

2

3" b, exp(=j2fk)

k=0

_ g1 BN (3.19)

P =P Hexp(j2 ‘=gt

i a, exp(—j2xfk)

Without loss of generality, we can assume that a,= 1 and b, = 1 since
any filter gain can be incorporated into o”. By using this parametric
representation, the spectral density can be calculated by a limited parameter set
for every frequency argument.

Thus, as the ARMA parameters are estimated, one can estimate the
power spectral density from (3.19). An efficient way for ARMA spectral
estimation, is to find firstly the MA spectral by making use of the estimated AR
parameters, then the PSD of the ARMA model can be estimated without
requiring the b, parameters.

As mentioned earlier, the AR and MA parameters of the ARMA model

are estimated separately, once the parameters of the AR part of the model have
been estimated, the sequence y(1) may be now filtered by the filter 4(z)defined

in (3.16) to yield the sequence

W) = y(m)+ Y@, y(n-k) n=0,1,2, ., N~1 (3.20)
k=1

The cascade of the ARMA(p,q) model with A(z)is approximately the MA(g)

process generated by the model B(z). To be specific, the filtered sequence v(n)
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for p<n< N -1 is used to form the estimated correlation sequence r.,(n), from

which we obtain the MA spectrum

. 3.21
P S = o r(me G212
m=—gq
then, the estimated ARMA power spectrum is given by
P () |
PR (f) = . 3
1+ a.e ™ (3.21b)
k=1

3.4 TIME-VARYING ARMA MODELS

Fiting ARMA models may be recommended to the analysis of
stationary signals whose statistical characteristics, such as average amplitude
and frequency content, do not vary with time. However, as a rule, biological or
biomedical signals are not stationary; they have a time-varying power
spectrum. Stationarity can be assumed only for single intervals. Consequently,
modeling such signals is not suitable for linear models which cannot change in
time. To account for these nonstationary signals, the construction of an ARMA
model with parameters varying in time and the adaptation of the model to the
changes of the structure of the signal at every point, will be discussed.

An EEG signal may vary much from one moment to another due to
changes in the physiological state of the subject. When observed for longer
intervals (more than 20 sec), the nonstationary character of the EEG signal will
be apparent. EEG signals may be visualized as random signals occasionally

contatning dominant frequency called rhythm and/or pulse like activity called
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spike. Also it was found that although EEG signals may appear stationary over
a short period of time, they exhibit a markedly nonstationary behavior when
observed for longer periods of time (Jansen, 1985). For example, the
amplitude and/or the frequency may change suddenly, and such changes may
last for long durations or may occur as brief transients. Thus, since EEG is
continually time-varying process, there must be a special way to deal with
them. For such signals, an adaptive model can be used, in which its parameters
are updated with the arrtval of each new data sample making it a powerful tool
for tracking the time dependency of the signal.

Systems possessing this characteristic were called adaptive systems
because they can change their parameters in accordance with measured changes
in their environment. Therefore, the corresponding ARMA models that can
change their parameters in accordance with the changing nature of the
incoming stgnal are called adaptive ARMA models. There are several
algonithms that can be used as an adaptive ARMA model. The most common
ones are-Least Mean Square (LMS), Recursive Least Square (RLS) and the
Kalman filters, besides, new developed algorithms (Grenier, 1983; Haseyama
et al., 1993; Isaksson et al., 1981; Nehorai e al., 1988).

Using adaptive ARMA modeling it is possible to determine the power
spectrum at every time point. It provides a fechm'que to calculate the time-
vmyiﬁg power spectra in such a way that enables the estimation of frequency
band powers with very high time resolution. In principle, the estimation is

possible at each sample point with an arbitrarily high-frequency resolution. The

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



46

dynamic spectral anzﬂysis can be performed with high-frequency resolution and
the computing time allows an on-line calculation of spectral parameters.
In the following section an adaptive procedure of fitting a time-varying

ARMA model to nonstationary signals is presented.

3.4.1 ADAPTIVE ARMA MODEL

In this section an adaptive recursive ARMA modeling as the basis for
time-varying (dynamic) power spectral analysis will be introduced. This
adaptive ARMA model is fit to nonstationary time series which allows self-
exciting adaptation of the model parameters being estimated in every time
point.

In general, time varying ARMA(p,q) models for the process y(n) can be

written as

? q 3.22
Y= =3 a, (ry(n = k) +3 b, (e = B) G2

where the parameters a,(n) and by(n) are estimated with an adaptive technique.
A recursive parameter estimation method for reducing the mean square
linear prediction error has been developed as follows (Schack et al., 1995)

am=0 for n<k k=12 ..,p
b, (n)=0 for n<k k=12, ..,¢9
a,(n)=a,(n-1)—c(n-De(nyn-k), for n>k k=12, ...,p (3.23)

b, (n) = b (n-1)—c(n—De(me(n-k), for n>k k=1,2,..,9q  (3.24)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



47

The sequence of the prediction errors efn) is calculated by the recursive

algorithm

P qa (3.25)
e(my=ym+>.a,(n-Nyn-ky+ b(n-le(n-k)  forn>0
k=1 k=1

The estimation procedure for equations (3.22)-(3.25) uses the prediction
error for the correction of the parameter estimation at every time point. This
procedure is called the adaptive ARMA modeling of a stochastic signal. The
control sequence c(n), which is called adaptation variable, needs to satisfy
certain conditions for convergent estimating. To obtain a robust estimation
procedure which can react to changes of the structure of the signal, c(n) is
chosen as

() = c(n)*, (3.26)
where c,(n) is limited and depends on the properties of the signal observed, and
the factor f, is a positive number. The term ¢,(n) is chosen to be reciprocally
proportional to the variance of the signal

c,(n)=(?,(n))"’ (3:27)

By considering the possibility of changes in the variance with time, a
dynamic fit of the variance estimation is necessary at each point in time. Such
adaptive estimation procedure for time-varying statistical parameters have
been developed previously and have_ the following special form (Schack e al.,
1995)

) 0) =0
o () = ozy(n—])-cs(ozy(n-l)-yz(n)) (3.28)
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where the adaptation variable ¢, fulfills the condition 0<c,<1. Similarly, the
variance of the signal of the prediction error is estimated adaptively as

A {0) =0

(1) = Pin-1)-co P n-1)-¢°(n)) (3.29)
with ¢, fulfills the condition 0<c,< 1.

The adaptation speed can be adjusted by the choice of the factor £, and
the constant c,. By increasing these factors, a quicker reaction of the estimation
procedure is possible after rapid structure changes. The result of higher values
of f, and ¢, is greater variation of the parameter estimation sequences around
their true values during stationary intervals.

As a result, an instantaneous estimation of the spectral density (updated

for each new sample point) can be given as

2

b, () exp(—j27fk)

k=0

(3.30)

P (nf)=

2

1+ i a, (n)exp(— j2nfk)

3.4.2 SIMULATION RESULTS

The performance of the adaptive ARMA procedure was tested on a
simulated, data, and different test systems were used. The systems are

driven at the input with a white Gaussian noise x(n) with zero mean and

. 2
variance oy .
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a) Adaptation of the model parameters:

The first system is an ARMA process with order (4,4) described by

y(n) + 0.1y(n-1) + 1.61y(n-2) +.016y(n-3) + 0.74y(n-4) = x(n) +0.34x(n-1) +

0.56x(n-2) + 0.21x(n-3) + 0.47x(n-4)

The adaptive estimations of the model parameters are shown in Fig. 3.4.
As seen from these figures, the adaptive sequences quickly fit to the true

parameters, varying around them after convergence.

b) Tracking the structural changes of the modeled signals:
The ability of the adaptive model for fast fitting after structural changes
of the modeled signal is demonstrated with the following example.

The test system used here is the ARMA(2,2) system given by
y(m) + ayn-1) + 0.98 y(n-2) = x(n) + 2x(n-1) + 0.5x(n-2)

The value of the parameter a; is changed from 1.96 to -0.4 atthe
sample point » = 1000 as illustrated in Fig. 3.5 which shows the abrupt change
of the estimating parameter after the change point and its convergence to the
true value. Thus, the adaptive parameter estimation sequence try to fit to the
new value. This property enables a continuous adaptation of the linear model to

the nonstationary signals.
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Fig. 3.4 Estimating of the parameters of the ARMA(4,4) process (a) a, parameters, and (b)
by parameters.
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Fig. 3.5 (a) Simulation of time series consisting of two different ARMA(4,4) process (i.e.
different in the a; parameter). The parameter g, is changed from 1.96 to -0.4 at
sample point n=1000. (b) adaptive estimation of the parameter a,.
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3.4.3 ADAPTIVE POLE-ZERQO ESTIMATION

Systems are usually identified in terms of the coefficients of their
characteristic polynomials or transfer function. However, one is often more
interested in the roots of the polynomials than in their coefficients. For
example, in biomedical engineering, the trajectory of the roots of an AR model
of EEG signals has been used to predict the onset of seizure (Rogowski et al,,
1981). The z-plane trajectories of the zeros of the prediction error filter during
the seizure period seem to provide a good way of predicting the onset of the
seizure. It is precisely the transient behavior of the adaptive pole thatis of
interest.

In situation like this, representation of the signals or systems in terms of
their roots is more appropriate than representation in terms of coefficients.
Traditionally, the roots are located in a two-stage procedure. Initially, the
polynomial coefficients are estimated using conventional identification
techniques such as RLS algorithm, and then the roots of the resulting
polynomial are found using standard factorization schemes. However, this
approach is often computationally too intense to apply to on-line tracking of
system roots where updated estimates are required at every sampling interval.

Thus, there exists a need for an algorithm which can satisfy the two
simultaneous requirements of

a) directly providing the estimates of the system’s poles (rather than the
coefficients)

b) providing new estimates as each data sample is received.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



53

For stationary processes, the estimates are required to become more
accurate with each update. For nonstationary processes, the estimates are
required to track the time-varying parameters.

Here an algorithm proposed by Nehorai et al. (1990) which satisfies the
above requirements is presented. The method estimates the poles and zeros
without explicitly estimating and factorizing the AR and MA polynomials. It is
based on the direct parameterization of the ARMA process in terms of its poles
and zeros rather than its coefficients a; and b, and uses the Gauss-Newton
Recursive Prediction Error (RPE) method (Soderstron ef al., 1989). The
algorithm is derived as follows:

An ARMA process is given by equation (3.1). Inthe z-domain, it 1s
represented as

- 331
Y(z) = H(Z)X(2) = %ﬁ%”z) (3:31)

where H(z) is the transfer function between the inputx(n), which is a zero-
mean white Gaussian noise with varance o, and the output y(n). The

polynomials A(z!) and B(z%) can be represented as follows

Ay =S [ [0~ Agz™) (3.322)

Bz")= Y b, (- A4,27) (3.32b)

The parameters A,,,k=1,2,..,p and 4,,,k=1,2, ..., g are the poles and the

zeros of the system  assumed to have magnitude less than unity. The
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coefficients a; are assumed to be real, implying that the poles should be real or
occur in complex conjugate pairs.
Define o, o and p™, &, to be the radius and positive angle of
the X" pair of the complex conjugate roots of A(z") and B(z") respectively, so
that
A = prexp(jay) (3.33)
The unknown parameter vector 1s defined as
9= [p(a)T p(b)T o7 w(b)T]T (3.34)
where,
P? = 1o/ s T
o =[ o, ..., o]
with m, = p/2 which represent the radii and angles of the roots of 4(z”%). The
superscript 7 means matrix transpose.
Similarly,
p(b) - [pj(b). o Pmb(b) ]T
o” =[o, ... o]
with m; = g/2 which represent the radii and angle of the roots of B(z").
The polynomial coefficients derived from these roots are collected into the
coefficient vector 7 given by
n=[a"b"] | (3.35)
where,
a=fa..., Qu"

b=[by,.. buJ"
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in a recursive manner. The entries of the matrix &,(n) are calculated using the

following recursion:

. ar._, 3.44a
ér_ =2p, cOS®, . -pl 2 - 2cosw,a, , +2p,4a,, ( )
67,0,( 630; épk

for2 < i <m, 1 < k <m with boundary conditions

&, . & 499813 (3.44b)

=0,—t=-2cosw,
p, Py

where n = p or g, m is the number of complex conjugate pairs of the roots.

The entries of the matrix £,(n) are calculated using the following

recursion:
_ , A, ] 3.45a
i =2p, cosw, —+ - p} 6?"' +2p,sinw,a, | ( )
ow, @, ‘o,
for2 < i <n, 1 < k <m with boundary conditions
@ _o B ) no, (3.45b)
éw, o,

Similarly, the entries of £&,,(») are calculated using (3.44) and those of
£,,(n) using (3.45), but with the coefficients b; replacing a;.

In the case of polar coordinates, computation of the coefficient vector
fi(n)  from the parameter vector 8(n) is accomplished by using the following
recursion

a’ =al™ -2p,a’ cosw, + play (3.46)
to find the AR coefficients from p () and @ . The same recursion is used

to find the MA coefficients from p® (n) and® (n) .
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Based on the above results, we now present the recurstve Gauss-Newton

RPE algorithm for ARMA pole-zero estimatton as given below:

Initialize :6(0),7(0),P(0),2(1),0(1).¢, (1), w(1),w(eo),w,
Mainloop

Do forn=12;.-- N

x(n) = y(n) — OEF( —1)

L(n) = P(n-1)Om)/[w(n) + 7 (n)P(n-1)D(n)]
P(n) =[P(n-1)- L(n)®" )P (n-1))/ w(n)

8(n) = 6(n-1)+ L(mx(n)

*caleulate nj(n) from 6(0)

*calculate E(n)

%(n) = y(m)— " (m)77(r)

Ve ) = $) =3 b,y (1= K)

Xp (1) = 51— 3 By p (- K)

*calculate p(n +1)

*calculate p.(n+1)

p(n+1) =" (Mg, (n+1)
w(n +1) = w() = (w() = w(n)w,

where, the matrix P(n} is defined as

. = (3.47)
P(n)= [Z O(mMP” (n))
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and the vector L(n) is the so-called gain vector of the recursive algorithm. The
variables x(») are the so-called a posferior prediction errors.

The recommended initial values for the algorithm are:
P(0) = cI; where ¢ is some constant and / is the identity matrix.
6(1) = @ (1) =0 the initial values for the pole estimates can be assigned using
any prior knowledge concerning their likely position. In the absence of such
knowledge, a possible choice is to distribute the poles uniformly around a
circle inside the unit disk.
For stationary process, the recommended values for the forgetting factor are wy
= 0.99, w(l) = 0.95 and w(e) = 1. Forgetting factor for nonstationary
processes is usually set at a fixed constant value less than 1. The more rapid the

parameter variation, the smaller (than 1) w becomes.

3.4.4 SIMULATION RESULTS

The performance of the adaptive pole-zero algorithm is investigated by
using it to identify the roots of the following simulated process.
An ARMA process with order (4,4) is simulated using the following difference

equation

ym) - 0.3y(n -1) + 0.69y(n-2) + 0.21y(n-3) + 0.45y(n-4) = x(n) +0.5x(n-1) +

0.68x(n-2) + 0.62x(n-3) + 0.4x(n-4)
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This process has polesat 0.9782 exp(+j1.0214} and 0.6858 exp(+j
2.1248). The zeros are located at  0.9118 exp(+ j1.2450) and 0.6937 exp(+
j2.4672). The transient convergence of the adaptive procedure are best seen by
plotting the adaptive magnitude and phase of the adaptive poles and zeros as
shown in Fig. 3.6. It can be seen that the algorithm converges rapidly to the
true values of the poles and zeros. This is due to the fact of using the Gauss-

Newton update with an exact expression for the gradient.

Pole pair #1 Pole pair #2
2 2
- -
20 1 o 01{
© ©
-— \ o 43
& ok u"’_, I ] S
-4 4 x
0 500 1000 0 500 1000
zero pair #1 zero pair #2
[
N
E E
a0 3 1
v
_4 s
500 1000 0 500 1000
Time Samples Time Samples

Fig. 3.6 Adaptive estimation for the magnitude (__ ) and phase (....) of the poles and zeros
of the ARMA(4,4) process. _
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3.5 ORDER _ESTIMATION OF THE ARMA MODEL

Estimating the parameters of the ARMA model is a major goal in
system identification and signal modeling. Many techniques have been
developed to solve this problem, but most of them assume prior knowledge of
the model order (Ljung, 1987). In most realistic situation, the model order is
not known and must be estimated prior to solving the parameter estimation
problem.

Obviously, selecting the model order is a key first step toward the goal
of estimating the model parameters. Several Criterions have been proposed for
the model order selection task. The most well known of the proposed solution
for this problem include the Final Prediction Error (FPE), Akaike Information
Criterion (AIC), and Minimum Description Length (MDL) (Kay, 1988; Proakis
etal., 1992).

Model order determination techniques based on FPE, AIC, and MDL are
computed from the prediction error variance, and are typically applied as in the
following way:

First, the range of ARMA model orders to be considered is selected
(6.8, 0 £ p <ppma. and 0 £ g <qua). Next, for each (p,q) pair the numerator
and denominator coefficients of the ARMA model are estimated under the
assumption that p and g are the correct model orders. A prediction error
variance of this model is then calculated. Fi'nally, the (p,q) pair yielding the
lowest value of the selected criterion is chosen as the best estimate of the true

model order.
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This approach suffers from the fact that, since the prediction error
variances are used to compute the criteria, all of the parameter estimates must
be first obtained in order to calculate the variances. Thus, in the next section a

new method for determining the order of the ARMA model which does not

require prior estimation of the model parameters is presented.

3.5.1 EIGENVALUE METHOD

In this section anew approach for model order determination based on
the MDL criterion is proposed by Liang et al. (1993) and is shown to depend
on the minimum eigenvalues of the covariance matrix derived from the
observed data. The algorithm is derived as follows:

The ARMA model is given by the following difference equation:

yn) = -—Zp:aky(n—k) +Zq:b,,x(n—k) (3.48a)
In z-domain, it is represented as
Y@ = H@X () = 28 x(z) (3.48b)
A(z™)

The polynomials A(z”') and B(z"') are of degree p and g, respectively, given by

Az ) = Zp:akz‘k (3.49)

B(z )= ib,{z"k (3.50)

The relationship of (3.48a) can be rewritten in matrix format as (assuming the

data length is N, thatis, n=0, 1, 2, ..., N-1):
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aO

al

»(0) 0 0 x(0) 0 ‘.- 0 1 :

y(1) @ - 0 x(1) x(0) .- 0 a,

: : T, : : : T, : b,

YIN-1) y(N=-2) --- y(N-1-p) x(N-1) x(N-2) -+ x(N-1-q)] b
_bq J

where v(n) is assumed to be zero-mean white Gaussian noise that represents
any observation or modeling error. This may be written more compactly as
Dpg Gpg=v (3.52)
in which D,, is a composite data matrix, &, is a parameter vector, and vis a
noise vector. We define the data covariance matrix as
Ry =D"pD,p, (3.53)
To estimate the input signal, x(#), to be used in (3.51), the following
procedure is performed:
It is well known that the observed output data can be modeled by a high
order AR model (Kay et al., 1981). Thus, (3.48) can be written as
yIy()] = x() + 1, [¥()] (3.542)
In the z-domain, -l
w(2)Y(z) = X(2) +y,(2)V (2) (3.54b)
where yand y, are operators performed on y(n) and v(n) respectively.
The infinite order polynomial w(z) is given by

(3.55)

LAz S, e &,
w(z)= B —gﬂnz ~HZ=0ﬁ,,z

v(0)
v(l)

w(N=1)

Deposit

(3.51).

esIs
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while y, (z) = 1/B(z").
If M is chosen large enough, a good approximation,(z), can be obtained
using least squares approach. Then the input signal ¥(») can be estimated using

w(z) as follows:

M 3.56
500 = Ayr-i) (3.56)

where the f; parameters are the elements of 6, = [, f:... fir]. whichis

estimated by

(3.57)
0, = ’:N 12¢2( )¢2( ):I z¢z( my(n)

where,

&) = [Y(n-1) -y(n-2) .. Yn-M)J'
Thus, after the estimation of the input signal, ¥(#), it can be used now in (3.51)
in the place of x(n).

The MDL criterion is equal to the sum of the log-likelihood of the
matrix likelihood estimator of the model parameters and a function that
penalizes the use of the larger number of model parameters. The criterion is
given by:

S (p.9)= - logf(ylé’)Jr% klog N (3.58)

Where,

y =0 yA)... yN-DJ
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and k is the number of free adjusted parameters (k = p+g+1) in the model, 8 is

the estimate of @ for a given p and g, and f{') is the probability density function

of the observation noise/modeling error vector, v = [v(0) v(1)}... v(N-1} 7.
Since v(n) is a zero-mean Gaussian noise with variance o, we have

1

fW=rri6)= 2 expl-o— vy
- mexp[— 2;2 'R, 0] .
then Jyp:(p.q, 8) reduces to
Joo (0,4,0) = %loga2 +—]2!10g27r + 2;2 BTRMB +%(p +g+1)logN (3.60)

For fixed p and q and constraining 8 to have a unit norm, the choice of 8
that minimize criterion (3.60) is found to be the eigenvector associated with the
minimum eigenvalue Ay, of R,,. With this choice of the 8= ,;, we have

'1—9TR ¢ :lvrv:l;{_ PP (3.61)
N min Fq  mn N N min

substituting and dropping all terms that do not depend on p, g, or & we obtain

N 1 3.62
Jin (4) = 2108 Ay 45 (P + )OS N G

The € in the argument of Jyp; has been dropped, since the explicit &
dependence is suppressed (actually it has been incorporated into the Ay, term).

Multiplying both sides by 2/N and combining terms results in

2

FJMDL (P’Q) = IOg[lm'm(N”N)(ﬁq)]

(3.63)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



66

Since log( ) is a monotonically increasing function, we can forma
different criterion that contains exactly the same information as Jipr(p.g) (i.c.,
the new criterion has its minimum at the same place as Jipr(p,g). The new
criterion is given by

J(P,q) = Ay (N')F79 (3.64)

From (3.64) it can be seen that for large N the (N''")¥*? part is
approximately one. This indicates that:

1- Model order selection is asymptotically simplified to examining the
minimum eigenvalues of R, for different values of p and q.

2- The MDL criterion asymptotically (as N gets very large) provides no more
information than the minimum eigenvalue of the covariance matrix Rp,. In
other words, there is an asymptomatic equivalence between MDL and the
minimum eigenvalue of this matrix.

If the noise/modeling error v(n) is zero and the candidates orders p and
g are chosen such that p 2 n, and g > n, (1, and n, are the actual model orders)
then the A, will be zero, then we have J(p,q)= 0if p > n,and g =2n; which
forms an infinite plane of zeros in the pg-plane. The smallest values of p and g
such that Ay, is zero are (p,q) = (n, n,) and lie in the corner of this flat plane
that is nearest the origin.

When the noise/modeling error v(h) is not zero, a similar situation
occurs. If p and g are chosen such that p 21, and g 2 1y, Ayiz Will not be zero
but it will tend to remain relatively small and flat for these values of p and g. If

p <mn, or q< ny, the modeling error is significantly larger (because the model
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does not have enough parameters to fit the signal very well), making Ay, also
significantly larger. This produces the same corner phenomenon at the correct
values of (p,q) = (na 1) described in the noiseless case above.

Therefore, we can calculate the table of J(p,gq) for all values of p and g,
and then search for the cormer where A.;, drops very quickly. We have
observed that the corner that has the smallest.J(p,q) relative to J(p-1,q) and
J(p.g-1) is the best estimate of the model order. That is, the corner for which

the ratio

Jp.9 g P9 | (3.65)
J(p-19) J(p.g-1) 1

are the smallest values which provide the best choice of model order.

In order to facilitate the model order selection process, the following
procedure was developed.
1- The J{p,q) table is organized so that p increases from left to right, and ¢
increases from top to bottom down the table.
2- Divide each row (element by element) of the J(p,q) table by the previous
row, so as to create a row ratio table.
3- Divide each column (element by element) of the J{p,g) table by the previous
column, so as to create a column ratio table.
4- From the row ratio table, an estimate of the order g is set equal to the row
number that contains the minimum value of the row ratio table.
5- From the column ratio table, an estimate of the order p is set equal to the

column number that contains the minimum value of the column ratio table.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



63

3.5.2 SIMULATION RESULTS

To illustrate the idea of this new algorithm, a simulation was carried out

on the following system which is an ARMA process of order (6,4) given by

y()+ 0.7907y(n-1}) + 0.042y(n-2) — 0.5556y(n-3) -0.0247y(n-4) + 0.3846y(n-3)
+ 0.3026y(n-6) = x(n) + 0.3452x(n-1) + 0.53x(n-2) + 0.3985x(n-3) +

0.8138x(n-4) + e(n)

where, x(n) is a white Gaussian noise with zero mean and unit variance, while
e(n) is an additive white Gaussian noise with zero mean and variance o’ The
variance o, was adjusted to set SNR = 20 dB.

The locations of the poles and zeros of the model is shown in Fig. 3.7
which shows that the zeros are closer to the unit circle than the poles and this
require that the AR modeling order, M, to be large(M = 80 is used here). Based
on this information, the J(p,q) table is constructed from which the row ratio and
the column ratio tables are created as shown in Tables 3.1, 3.2 and 3.3.

The shaded cell in Té.ble 3.1 is used to identify the best model order
candidate, while the shaded cells in Tables 3.2 and 3.3 indicate the row or
column that is the best ca:ndidate for the number of zeros (g) or poles (p) of the
model. Thus, the true model order is obtained from the row and column ratios

tables, i.e., n,= 6 and n, = 4.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



69

For comparison purpose, the preceding process was simulated 25 times
and the optimal order is obtained by applying the Eigenvalue (EV), AIC and
MDL methods.

For the AIC method the following criteria is used
AIC(p.g) = Nin &, +2(p+q)
in which the optimal order (p,q) is the one which gives the minimum value of
AIC. While, for MDL method, the criteria used is
Jupr(p.g) = (N/2) log &pq +1/2 (pq)logN
where the optimal order (p,g) is the one which gives the minimum value of

MDL.

a) Comparing with respect to data length:

To demonstrate how the new method work for different data lengths
compared with the other two techniques, different data lengths were taken in
each run. The results are shown in Table 3.4, which gives the number of the
correct order selection of the 25 trials for the preceding process. It can be seen

that, the new method is better than the other two methods for different data

lengths.

b) Comparing with respect to the effect of additive noise:
To study the performance of the new method at different SNRs, the
preceding process was performed at SNRs ranging from 5 to 20 dB with 5 dB

steps by adjusting the noise variance o ,”. For each SNR, 20 trials were run and
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the percent correct model order estimatton was computed. This procedure is
applied using the three algorithm and the results are shown in Fig. 3.8. The new
method is seen to give more correctly model order estimate than the other two

techniques in the case of different levels of noise.
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Fig. 3.7 Locations of the pole and zeros of the given ARMA(6,4) model.
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Table 3.1 J(p,g) criterion

)
q ] 1 2 3 4 5 6 7 8 9 10 ‘D
0 | 1354894 | 1220512 | 1204898 | 109.7341 109.2344 | 84.8436 54.8993 51,4400 455059 37.4408 ] 2
T | 1276560 | 1233329 | 120.4963 | 1113150 | 104.9612 86,4191 48.0179 48,8365 40.5373 30.9579 26.0795 %
2 | 991997 1010499 | 99.9211 1011514 | 944993 86.2791 485172 474815 39.6870 31.1439 220956 | (N
3 | 97.7253 83.2635 84.5393 84.6542 840770 82,3336 28,2288 473333 39.6222 29.0393 24,5523
4 94,2374 723109 603320 61.3658 61,6135 54 4267 30.2356 . 35.4650 321787 27.5780 24 9630 . m
s | m3z0s7 71.2095 61.3143 623771 61,7034 546917 35.2637 34.8176 32.7981 27.8650 25.2469 8
§ | 827430 76.5455 61,6947 605741 61.9497 51,5577 35.0469 35.4243 26.8928 34,6659 Bo2 | &=
7 | 832520 71 8021 60.6955 60.5485 59.8738 460640 355772 35.7669 273881 22.9901 21688 |1~
8 74.3610 600466 56.4141 57.2952 57.0154 46 9218 299826 29.3432 24 1834 22.3070 22,1096
9 | €724 61,1861 55.9919 57.0266 $7.4138 46.5560 27.7306 27.7815 22.2859 19.7103 19.6642 *-5
10 | 681428 61.7898 57.0293 57,6545 58,2620 473769 27.4501 261553 21,5228 20,0677 19.4962
%
1
. ©
Table 3.2 Row ratio table §
P =
) 0 1 2 3 4 5 6 7 8 9 10 o
1 0.9422 1.0105 1.0001 1.0144 0.9609 10185 (8747 09492 0.8908 08269 0.7088 >
2 07771 08193 0.8292 09087 0.9003 0.9984 1.0104 09725 09790 10060 092319 m
3 0.9851 0.8240 0.8461 0.3369 08897 09543 09941 0.9969 0.99%4 09324 10190 5
a4 0.9643 0.8684 0.7137 0.7249 0.7328 0.6610 0.6269 07493 08121 09497 1.0167 S
5 0.8829 09848 1.0163 1.0165 1.0015 1.0049 11663 09817 1.0152 1.0104 1o |2
6 0.9945 09907 1.0062 0.9775 1.0040 09427 0.9939 10174 0.8199 0.8852 0oa08 |
7 1.0061 10178 09838 09930 0.9665 08934 10151 1.0057 10184 0.9321 0.9047
H 08932 08363 09295 09463 09523 10186 08427 0.8204 0.8830 09703 10192 .
9 09242 1.01%0 0.9925 0.9953 1.0070 09922 09249 09468 09215 08836 08894 o
10 09915 1.0059 10185 Lo110 10148 1.0176 09899 0.9415 0.9658 10181 09915 -
| —
o)
|
1
Table 3.3 Column ratio table S
P %
1 2 3 4 5 6 7 8 9 10
g x
0 0.9008 09872 0.9107 09954 07768 0.6470 09370 03346 08228 09827
1 09662 09770 0.9238 09420 0.8233 05556 . 10168 0.8302 07637 08424 2
2 10187 09888 10123 09342 0.2130 0.5623 09787 08358 0.7847 0.7737 c
3 0.8520 10153 1.0014 0.9932 0.9793 0.5858 09814 08371 0.7329 0.8455 O)
4 0.7673 0.8343 10171 1.0040 0.8834 0.5555 - 1.1730 05073 08570 09052 D_:
5 0.8558 0.8610 1.0173 0.9892 0.8864 0.6448 0.9873 09420 0.8496 09060
6 0.8525 0.8745 0.9883 10160 0.3323 0.6798 10108 0.7592 09172 09722 =
7 0.8625 0.8453 0.9976 0.9889 0.7694 07713 1.0053 0.7657 0.83%4 09436 <
3 0.8075 0.9395 10156 0.9951 0.8230 0.63%0 0.9787 0.8242 09224 0.9912
9 0.8903 09151 L0185 1.00G8 08109 0.395 10018 0.8022 0.8844 09977
10 0.9068 0.9230 10110 10105 08132 0.5754 05528 0.8229 09324 09715
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Table 3.4 Number of correct order estimates for the given example obtained by applying
the Eigenvalue (EV), AIC and MDL methods for different data lengths.
Method Data length (V)
150 300 500 1500 2000
AIC 9 10 10 12 15
MDL 13 13 16 18 19
EV 15 19 21 22 22
1 T
0.9
3
Q
(=)
X
L
&
n
(%]
© 0.4} ]
S
“ o3 + EV 1
X MDL
02} o AlC |
0.1 -
0
5 10 15 20

Fig. 3.8 Effect of the additive noise on the model order estimate obtained by applying the
Eigenvalue (EV), AIC and MDL methods for different SNRs.

SNR (dB)
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3.6 ARMA MODEL WITII MULTIPLE INPUTS AND DELAYS

This section presents a new approach to ARMA modeling which
automatically seeks the best model order to represent investigated linear, time
invariant systems using their input/output data. In this algorithm, which is
proposed by Perrott et al. (1996), estimation results of an initial, over-
parameterized model are incorporated to produce a set of lower order candidate
models. Comparison of the models in this set leads to the selection of a model

order to represent the system.

3.6.1 ARMA PARAMETER REDUCTION (APR) ALGORTHIM

For convenience, we will limit discussion to the two input ARMA
model, the extension of the method to svstems with more inputs should be
clear.

Consider a two input LTI system whose input are x;(n) and x,(n), and
whose output is y(#n). The corresponding ARMA model is denoted as:

Y =Sy -1+ S, (-1 + 56, (1) + ) (3.66)

P kst =2
The sequence e(n) is assumed to be white Gaussian noise with variance
Efe(m)’]= .
In the z-plane, the ARMA model can be written as:

A(2)y(z) = B(2)x,(2) + B,(z)x,(2) (3.67)

in which we have defined the following:
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gy
B, (2)= Zblkz-k
k=5l

B,(z)= ibu_z"‘
i (3.68)

P
A=Y a:z"
k=0

From (3.67), we define the input output transfér function relationships

»2) _ By(2) (3.69)

H (;):M: B,(2).
| x,(z)  A(z)

H =
pyEelTESIE

In attempting to represent the given physical system with such a model,
two fundamental issues arise:

1) Estimation of the model order (i.e., the values of {p, s;, g1 52, g2} in
(3.66))
2) Estimation of the parameter values once the model order is known.

As mentioned earlier, several different algorithms have been used that
attempt to identify the best ARMA model order of an investigated physical
system. Unfortunately, none of them consider systems with multiple inputs or
delays (having s; and s; # 0 in (3.66)). Thus, this new algorithm that
automatically estimates the ARMA model order associated with systems that
are allowed to have multiple inputs delays.

In this method, the MDL criterion which makes use of ‘residual error
norms’ is used to evaluate a given model’s perfbrmance in comparison to other

models. Its value is given by:

||gk "2 (3.70)

MDL(k) = (1 +k'°iN-J
N JN
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In the above formulation, & is defined to be the number of parameters contained
within the model, ¢, , the prediction error sequence, and |, [is the residual error
norm. When a set of candidate models are compared to each other, the model
whose MDL value is less than the MDL values of the other models in the
candidate set is said to perform better than these models. Thus, selection of a
model using the MDL criterion amounts to finding the model among the
candidate set which has the minimum MDL.

For a selection set of candidate models to be compared, we first mention
the standard assumptions made for selecting ARMA models to represent
systems without delay, namely,

AR parameters:
a; #0 for igfl, pf
a; = 0, elsewhere.

MA parameters:
by = 0 for k€f0, q;]
by # 0 for je[0, q5]
by = by = 0, elsewhere.

Unfortunately, the above assumption made on the MA parameters in
ARMA modeling break down for systems with delays. In such cases, an
appropriate set of constraints for these parameters is:

b =0 for kefs;, q,]

by = 0 for jefss q,f
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Here we not only lift the previous restriction that s; = 5, = 0, but we also
allow by and by to be zero within the range kefs; g,/ and je€/s2,q2],
respectively. Thus we allow for the nonzero MA parameters to be some
combination of the total number of MA parameters contained in the sets k&/s;,
q;] and je[s2 qa].

Under the new MA constraint, the user now has to worry about varying five
parameters, namely, {p, 5;, g1 52, q2}.

Referring back to the ARMA model in (3.66), define a ‘data vector’

associated with any specified y(n) as follows:

¢’r(")T =[x, (n—s)-x,(n=q)x,(n=5,)x,(n—q,)y(n=1)--y(n - p)] (3.71)

also, define a ‘parameter vector’ as:

9:» =[bm'“b bzsz"'bzqza1"‘ap] (3'72)

g
where ¢ corresponds to the dimension of & (i.e., to the number of the nonzero
parameters in the ARMA model).
Making use of these definitions, we rewri’te (3.66) as:

y(n)=¢,(n)" 8, +e(n) (3.73)

For N samples of the input and output sequences, we have:

¥(0) _ ¢,(0)" (0)
r=| Y0 I o= 4O L g D (3.74)
YN-1) ¢ (N -1)" e(N-1)

Using these definitions, the relationship between input, output and noise data is

written fc_)r the ARMA model as:
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Y=006+E (3.75)
which represents the actual ‘true’ parameterization of an investigated physical
system.

Since the parameters contained within &, along with their values, are
unknown in the context of system identification, it is necessary to specify an

equation which describes an ‘estimation model’ selected by the user, namely,

Y=d,6, +e, (3.76)
In the above equation, 6, represents the ARMA parameter estimates, and &,
the corresponding prediction error sequence.

In order to find the estimation model for which & = ¢, an approach that

incorporates estimation results from an arbitrary, specified model is proposed.
Thus, we initially choose & as some arbitrary, large number such that £ >¢ and
define this as the ‘maximal model’. A technique will be presented that attempts
to remove the extra parameters from @;.

Given that the initial value of k has been chosen, the parameter estimates
8, are calculated with the Ieast squares procedure (Kay, 1988). This operation
is described compactly for the ARMA model as:

6, =(PId,)"' Y (3.77)

If we are to compare the chosen maximal model with the true model, it will be
necessary to augment the 8, vector with the extra parameters contained within |

8, . For this purpose, (3.75) is modeled as
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Y=0,6,+E (3.78)
combining (3.77) and (3.78) we obtain

8.-0, +v, (3.79)
where

v, =(OID,) OIE
is a corrupting noise vector whose autocovariance matrix is
Efv v =0 (@ID, )" (3.80)

The diagonal elements within the above matrix correspond to the variance, or
‘average energy’ of the individual elements within v, which, in general, varies
from parameter to parameter.

Our concemn lies in determining which parameters within 6, are true

(i.e., have an actual value that is nonzero). Intuitively, the larger in magnitude a
parameter estimate is, the less likely it has an actual value of zero. However,
each of the estimate was shown to be corrupted by noise whose average energy
varies from parameter to parameter (3.79). Therefore, if we are to compare
parameter estimates, it is more appropriate to first normalize their values by the
level of the corruption occurring from noise. So, if we think of the true
parameter component &, in each estimates as being the signal, and v as being
the noise, then a signal to noise (SNR) ratio can be formed for each individual

parameter as follows:

0,()° J 6, Gy’ (3.81)

SNR(8,.(1)) = \jE[vk(i)l] ) Ev, (i)']

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



79

where i designates the i element of the vector 6. One can see immediately
that the SNR ratio effectively normalizes each estimate by the amount of
corruption occurring from noise. Therefore, we propose to use the SNR of each
parameter to compare the likelihood of each parameter being ‘true’. Parameter
estimates with high SNRs will be considered more important than those with

low SNRs.

To develop a consistent model selection procedure, we need to consider

AR and MA parameters separately in terms of evaluating their relative

likelihood of being true. The algorithm which is referred to as the ARMA

Parameter Reduction (APR) is summarized below:

1) Select a ‘maximal model’, a model that is believed to include all the true
parameters of the system.

2) Remove the AR parameters from the maximal model one at a time starting
from the highest index, while retaining all the MA coefficients in the
maximal model (i.e., decrease p one value at a time), creating a set of lower
order models. |

3) Use an evaluation method (i.e., MDL) to choose the best performing
‘reduced model’ from among the set given by 2, that is, the MDL i1s used to
compare the performance of each candidate model, and the best performing
one is selected and defined as ‘reduced model’. Note that this step implicitly

estimates the AR order.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



80

4) Using the ‘reduced model’ parameterization, the SNR ratios of the MA
coefficients are calculated and then used to create another candidate set of
models.

5) To form this new set, MA parameters are removed one by one from the
reduced model according to their SNR ratios (i.e., MA parameters with low
SNR ratios are removed before those with high SNR ratios). Thus, each
model within this new candidate set contains the same AR coefficients but
progressively fewer MA parameters.

6) Use the MDL criterion to compare the performance of each candidate
model from the set given by (5), and the model with best performance 1s
chosen and defined as the ‘minimal model’. Note that this step estimates the
MA order, thereby estimating the overall ARMA order.

7) The minimal model is the algorithm’s best guess of the true model of the

system,

3.6.2 SIMULATION RESULTS

To illustrate the above method, the following example is performed.

Consider a system with delays given by the following ARMA process

ym)= 1.2y(n-1) -~ 0.35y(n-2) - xy(n-3) + x5(n-1) —~ 1.3x,(n-4) + e(n}
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The model parameters are
AR parameters:
p=2, a;=-12, a; =035
MA parameters:
5;=3, q1=3, {bi3} =-1
s;=1, gy=4, {by bay by, by} = {1,0,0,-1.3}
where x;(n) and x,(n) are white Gaussian noise with zero mean and unity
variance and e(#) is also Gaussian noise with zero mean and variance o’
adjusted to give 0 dB.
To apply the APR algorithm, the following steps are performed
1- A ‘maximal model’ is first chosen which includes the true model. Itis
defined as {p, s, g1, 52 g2} = {5,0, 5, 0, 5}. Thus, the maximal model has a

total of 17 parameters.

2- A ‘reduced model’ is obtained by making use of the MDL values applied to
the various models generated when the AR parameters of the maximal model
are removed one by one. The results of the MDL criterion is shown in Fig. 3.9
(a) from which we can see that the minimum MDL occurred when the number
of the parameters is equal to 14 (i.e., three of the AR parameters are removed).
Thus the ‘reduced model’ is given by {p, s;, g1, 52, g2 = {2, 0, 5,0, 5}. From

this step, the AR order is found to be p = 2.
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3- The SNR for each MA parameter in the reduced model is calculated, and the
results are shown in Fig. 3.9 (b) and (c) from which we can see that the
parameters b;; by and b,; have the highest SNR comparing to the other

parameters. Thus, they are the most likely parameters to be true.

4- A ‘minimal model’ is obtained by making use of the MDL values applied to
the various models generated when the MA parameters of the reduced model
are removed one by one. The results of the MDL criterion is shown in Fig. 3.9
(d) which shows that the minimum MDL occurred when the number of the

parameters is equal to 5 in which they construct the mintmal model.

As found in step 2, the order of the AR part is p = 2, thus, the remaining
three parameters in the minimal model belong to the MA part. Furthermore,
since by; by and by, have the highest SNR as shown before, the three MA
parameters contained in the minimal model correspond to these parameters.
This leads to estimate the delays to be 5, =3 and 5, = 4.

Finally, the minimal model order for the system was selected as
AR parameters:

p=2,with a; =-1.33 and a, = 0.51
MA parameters:
513, q1 =3, {biz3} =-1.22

8= 1, g~ 4, {sz, bzg, b23, bz4} = {085, O, 0, -098}
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Fig. 3.9 (a) MDL criterion applied to the models produced by removal of AR parameters
from the maximal model. (b) SNRs obtained for the MA parameters of the first
input system (b, parameters). {c) SNRs obtained for the MA parameters of the
second input system (b, parameters). (d) MDL criterion applied to the models
produced by removal of MA parameters from the reduced model.
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3.7 EFFICIENCY OF PARAMETRIC METHODS

In spite of its many successful applications, a parametric method is

efficient only when its limitations and basic assumptions are acceptable. They
are applicable if the result of inverse filtering of the EEG would be white
Gaussian noise. A parametric model can be regarded as being efficient if the
residual coming from inverting the fitted model constitutes a white noise
process. The procedure for obtaining the residual, e(n), of a parametric method

(ARMA or AR model) is shown in Fig. 3.10.

EEG AR or ARMA residual
P model »

() e(n)

Order selection

Fig. 3.10 Block diagram for obtaining the residual sequence from the fitted ARMA or AR
model.

The testing procedures are described below. The following tests have
been used on the residual for testing the efficiency of the selected model

(Popinanov, 1992).
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1- Test 1: A white noise process is uncorrelated with itself for all lags, except
the lag equal to zero. In order to compare two time series with different scales
of measurements, the normalization of the autocovariance, R(k), is necessary.
The alternative covariance function, #(k), can be obtained by dividing the
autocovariance estimates by the estimate of the variance of the residual signal.
Thus,

_ Rk) (3.85)

rk R(O)

where,

Nk 3.86
ROy =~ (el = 2)(e(i +£) =) (386

To test for the lack of ‘local correlation’ the r(k) must be within the
range limited by +M AN for k=1,2,.., N2, with A =196 fo. significance
level p< 0.05 (95% significance interval). Where the decision rule is that the

alternative covariance function is acceptable if - AN <r(k)<A /N .

2- Test 2: A white noise should have a constant power spectrum. The criterion
of integrated spectrum has been wused for detecting sine terms, i.e. the
departures from whiteness caused by periodic effects. The cummulative
periodogram is used here for the sample integrated spectrum computed at the
harmonic frequencies @y, = 27k/N. The normalized cummulative periodogram

is used as a test for statistic gfk), k=1, 2, ..., N/2 computed according to
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gk) =5 (3.87)

with

(3.88)

Cl= (}%ge( F)cos(w,. j)] + (% JZI:: (e(j)sin(w, -J')J

To prove the efficiency of the selected model, 1. e., the lack of the sine

term in the restdual, g(k) must be within the area limited by two straight lines
f=2k’N+ VJIN-1  fork=l1,2, .., N2 (3.89)
with A = 1.35 for significance level p< 0.05. The decision rule is that the

normalized cumulative periodogram is acceptable if the following is achieved

3.90
2m-z/.%-1g o(k) < 26N + %-1 (3.90)

3.8 SIMULATED EEG

Because of the practical limitations of having areal EEG data to use
them as a useful tool to investigate the performance of the various algorithms
developed earlier, a simulation technique is used to simulate different types of
EEG signals. Thus, algorithms used in this thesis will be tested on a simulated
EEG data. The simulation technique used here is the one that is described by
Weiss (1986) in which the simulated EEG signals were generated by linearly
combining second order AR series. A summary of this technique is described

below:
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The EEG process is characterized by peaked spectra at one or more
resonance frequencies. Each peak spectra has its own frequency location,
bandwidth, and relative power (relative amplitude). Thus each peak inthe
spectrum is described by a second order AR model, then the total signal can be
represented as the summation of these individual second order systems, ie.,

EEG(n) :i(alky(" — 1)+ a,, y(1n = 2) +a,,x(n)) (3.91)

P
where the a;’s are the parameters of the second order AR models, M is the
number of the resonances presented and x(n) is a white Gaussian noise.
Furthermore, the power spectral density of the simulated signal is the linear
combination of the spectra of each peak.

Thus, the actual simulation procedure involves the selection of the
location, the bandwidth and the relative amplitude of each peak. This leads to
different values of the parameters ay, a; and a5 and as a result, various types of
EEG signals can be simulated.

Fig. 3.11 shows different types of simulated EEG signals with their
corresponding power spectral density. These simulated EEG signals will be
used in the next chapter to study the performances of the ARMA modeling

techniques in analyzing the EEG signals.

After we have introduced the various aspects of the ARMA modeling,
we will show in the next chapter how we can use the ARMA model to extract
an detect important features of the EEG signals and how we can avoid the

situation of having some zeros of the ARMA models outside the unit circle.
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CHAPTER 4

EEGC FEATURE EXTRACTION USING

ARMA MODEL

The quantitative analysis of the EEG signals has been one of the most
significant advances in the field of electrophysiology. Its primary purpose is to
supply the neurophylogist with information that will complement the visual
evaluation and hence improve the judgment. A somewhat idealized procedure
may be described in three steps:

1- Appropriate sections are selected from a recording for further analysis.

2. Extraction of characteristic features of the process relevant to the purpose of
analysis.

3- Classifying sections of EEG recordings and identifying the appropriate set
of classes.

Thus, quantification of the EEG using computers is based on complex
subjective processes of data reduction and feature extraction.

A common processing strategy used in computerized EEG is spectral
analysis. EEG waveforms can be broken down into separate components, each
component having a different frequency. This decomposition of the waveform
results in a frequency spectrum, which yields a distribution of amplitudes as a
function of frequency for a given sample of EEG data. The processed EEG data

presented is based on power spectral analysis. The amplitude or power of each
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sine wave component of the EEG waveform is presented as a function of
frequency, assuming no interaction between waves. This presents neuroelectric
data as epochs of specific, definable information, which may be -easier to
interpret than raw EEG for less experienced personnel.

Spectral EEG data allows precise characterization of the frequency
composition of brain electrical activity for a given period of time. Typical
measures that are derived from spectral analysis of the EEG include: absolute
power which is the amount of energy within a particular frequency expressed in
microvolts squared, relative power which is the percentage of the total power
spectrum that is present in each frequency band, and mean frequency which
specifies the average frequency occurring in each frequency band.

As we have seen, the parametric models represent samples of the EEG
signals through the linear relation given by (3.1). We have to show the validity
of (3.1) as amodel describing the rhythmic properties of the EEG. Thus, the
next section will be devoted to the discussion of how a variety of important

EEG signal parameters can be reliably estimated by using ARMA modeling.

4.1 FEATURE EXTRACTION

In parametric methods, one difficulty lies in interpreting the model
parameters in terms that are familiar to the neurophysiologist. Presentation is
often done by calculating the spectral density and plotting the results. Attempts

have been made to describe the spectral density in terms that are closely related
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to the quantities used in the clinical neurophysiology. In this way, the spectral
density may be partitioned into spectral components called 4, ¢, and £ as
shown in Fig. 4.1 (Isaksson et al., 1981; Smith et al., 1986). This is known as
Spectral Component Parameter Analysis (SPA) of the background EEG. This
technique resolves the power spectral density into a small setrof‘ smooth, peak-
shaped “spectral components” each characterized by parameters giving its
location in frequency, its width, and its area or power. This method represents
the spectrum concisely and the spectral components parameters are directly
related to the common terms used by the neurophysiologist to describe the
EEG. The peak frequencies are denoted f, and f; and the bandwidth parameters
0, 0p and os while the power parameters are written G, Ggand G5 and
expressed either in percentage or in absolute values.

The most direct approach to SPA is to fit an ARMA model to the EEG
and then to compute the spectral component parameters from the ARMA
coefficients. Processes characterized by ARMA models have spectra that
exhibit clear peaks over a background of more widespread power contributions
with possibly some “missing” frequencies. The spectral peaks are associated
with the poles of the rational transfer function, and the valleys (or missing
frequencies) with the zeros. In other words, the peaks in the power spectrum

are characterized by the AR branch, and the valleys by the MA branch.
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Fig. 4.1 Decomposition of the EEG spectrum into three spectral components corresponding
to delta, alpha and beta activities. SPA parameter indicates. Dashed lines represent each
component, while the solid line is the sum of all three components. (Isaksson ef al., 1981).
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The number of peaks in the spectrum depends on the number of
coefficients. The location of these peaks is determined by the position of the
complex poles relative to the origin, and the peaks become more pronounced

when the poles occur closer to the unit circuit.

4.1.1 SPECTRAL PARAMETER ANALYSIS

SPA assumes that the autocorrelaton of the EEG has the form of a sum

of complex exponential:

R-Faen %

The real and imaginary parts of the poles s; = o; +j27f; give a total of 2p
independent parameters. The one-sided power spectrum corresponding to each
complex cénjugate pair of terms and eachreal termin (4.1) has the form of
smooth peak, called “spectral component”. The EEG power spectrum density 1s
the algebraic sum of these spectral components. The location in radian
frequency of a spectral component is given by the imaginary part (27 f) of the
associated pole. A spectral component at zero frequency has a radian frequency
half-power bandwidth equal to the negative of the pole’s real part (o;) and a
power equal to the associated real residue value G;. A spectral component a
way from zero frequency has half-power bandwidth of -20; and power
2Re(G)). |

An autocorrelation of the form in (4.1) is equivalent to an ARMA model

of uniform samples of the EEG signal, y(n) = y(nI), having the form
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YW+ ap(n-l) +..t Qy(np) = box(n) + byx(ul) 4ot box(ng)  (42)
As defined earlier, this model has transfer function

B(z™") (4.3)
Az™")

H(z) =
with
A = 1+a "+ +a,z”?
BEY) =by+ bz’ + ... + bzt
In order to make the model stable it is required that the related polynomial
FAEY) =P +a, '+ +a, (4.4)
has all its zeros (i.¢, poles of the transfer function) inside the unit circle.

The spectral component parameters in (4.1) are directly related to the 2p
ARMA coefficients in (4.2). The poles of (4.2) are given by the roots p; of the
polynomial

Fra v +a,=0 (4.5)
and related to the s; in (4.1) by
p, =&’ (4.6)
Evaluating the expression in (4.5) at the unit circuit z = &7, we get
exp(pjwT) + a; exp{(p-1)jol]+.. +a, =0 (4.7)
Equation (4.7) can be factored and written in the form
(exp(aT)py) (exp(oT) -py) ... (exp(eT)-p,) = 0 (4.82)
That 1s,

(exp(jerT)-p) = 0 (4.8b)
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Thus, the value of w; for which exp(jw;T) match the phase of p; represents the
resonance frequency (the frequency at which there is a peak in the frequency
spectrum of the data sequence) and it is known as the dominant frequency.

Hence, the dominant frequencies, @, are given by the phase of the roots of

(4.8)
& =2 2p, = Tmlin(p,) (4.92)
and
1 (4.9b)
i = —Im{In{ p,
fi= o—m(in(p,))
The bandwidth is given by
1 (4.10a)
BW=—1
o7 P
for a spectral component at zero frequency, and by
(4.10Db)

1
BW = ——In(p,
— n(p,)

for a spectral component a way from zero frequency.

The power at the dominant peak is given by the area under the peaks in
the power spectrum between two cutoff frequencies. One way to obtain this
power 1s to integrate the power spectral between the desired frequencies.
Another method 1s to find the power at the peaks based on the residues (Res)

Pow(f}} = 2Re (Res(p))) (4.11)

From the past discussion it is evident that the form of A(z) is important

in our development because it reflects the resonance structure of the spectral

data. In (4.5) the poles p; may be real or occur as complex conjugate pairs.
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The real roots correspond to near DC (if p;is +ve) or near f/2 (if p; is -ve)
while each complex pole-pair of p; corresponds to a resonance (thythm) whose
resonance frequency and bandwidth are given in (4.9) and (4.10).

We have shown that the spectral analysis using ARMA models provides
quantitative information on peak frequency, its associated power and
bandwidth. The intended use of SPA is the on-line computation and display of
a concise, clear trend plot of the EEG spectral information. SPA not only
provides a summary of the EEG in convenient graphic form, but also facilitates
statistical analysis of EEG effects which may not be evident by inspection. It
provides a method of reducing selected EEG segments to a convenient

quantitative summary. -

4.1.2 SIMULATION RESULTS

To see how the ARMA model can be used to represent and extract
important features of different classes of EEG signals, the following two
examples are performed. Example # 1 shows a comparison between the ARMA
and AR models in representing the EEG signals. While in example #2, the SPA

technique is tested.

Exmple #1:
Four classes of simulated EEG waveforms known as, delta, theta, alpha,
and beta are used to compare the performance of the ARMA model in

modeling the different activities of the EEG signals with that of the AR model.
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For each EEG class, different 30 records are created using the EEG

simulation techniques described in section 3.8. Each record has a data length
of 500 sample points. These records are fitted to both the ARMA and AR

models. The EEG classes and their corresponding PSD are shown in Fig. 4.2

for a specific one record of each class.

a) Model order comparison:

The results of the optimal order of ARMA and AR modeling are
represented in Tables 4.1 and 4.2, respectively. The order of the ARMA model
is obtained by applying the eigenvalue method discussed in section 3.5, while,
the order of the AR model is obtained by applying the AIC method in which
the optimal order is selected according to the following criteria

AIC(p) =Nin & +2p
where N is the data length and o, is the estimate of the white noise variance
for the p™ order AR model. The appropriate order of the model is the value of
p which gives the minimum value of AIC.

As shown in Table 4.1, the optimal order of the ARMA model has an
average of 4.81 for the AR part and 2.58 for the MA part. Also, it can be seen
that all classes of the EEG signals modeled by the ARMA model have nearly
the same average number of parameters. Whereas, Table 4.2 shows that , the
optimal order of the AR has an average of 8.89. Besides, the average order of

some classes as alpha class is higher than those of the other classes.
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Table 4.1 Optimal order of ARMA model using the Eigenvalue method.

Class of EEG Order of ARMA model
Mean (p,g) Maximum (p,q) Minimum (p,q)
Delta (5.03,2.32) 9, 4) “4,2)
Theta 4.71,3.23) (8, 6) 3, D
Alpha (5.17.2.51) {9, 5) (5,2)
Eeta (4.33,2.26) 8,4) “,2)
Total (4.81, 2.58)

Table 4.2 Optimal order of AR model using AIC method.

Class of EEG Order of AR model
Mean Maximum Minimum
Delta 7.58 13 2
Theta 8.68 13 2
Alpha 10,95 16 2
Beta 8.34 15 3
Total 8.89

Moreover, it can be seen that the average orders of the AR model is
always higher than that of the ARMA model for each class. Thus, we can say
that in general, the AR model needs larger order than the ARMA model to

represent different EEG classes.

b) Residual tests:

To evaluate the efficiency of both the ARMA and AR models in
representing the EEG signals, they are tested through the residual tests
mentioned in section 3.7. The test of the lack of correlation (test 1) and the test
of the lack of the sine terms (test 2) are performed. The results are shown in
Tables 4.3 and 4.4. For illustration, tests 1 and 2 are shown in Figs. 4.3 and

4.4, respectively, for one record of alpha class.
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As shown from Tables 4.3 and 4.4, the two tests are satisfactory for
most the records of every EEG class. For the ARMA model, Table 4.3 shows
that about 85% of the EEG classes passed test 1, 89.17% passed test 2 and
8.33% passed both the tests. Thus, we can say that, about 8.33% of the
different classes of the EEG signals can be represented by the ARMA model.

For the AR model, it can be seen from Table 4.4 that, the percentage of
the EEG signals that passed test 1 is 85.84%, and that passed test 2 is 88.34%,
while about 82.5% passed both the tests. Therefore, about 82.5% of the EEG
signals can be represented by the AR model.

From these results, we can say that, both the models are efficient in
representing the EEG signals, keeping in mind that the ARMA model needs, in

general, less parameters than the AR model to achieve this purpose.

Table 4.3 Percentage of EEG classes that can be modeled using ARMA model.

Class of EEG Test 1 Test 2 Test 1 and Test 2
Accepted (%) Accepted (%) Accepted (%)
Delta 86,67 93.33 86.67
Theta 83.33 86.67 80.80
Alpha 86.67 90.0 83.33
Beta 83.33 90.0 83.33
Mean 85.0 89.17 83.33

Table 4.4 Percentage of EEG classes that can be modeled using AR model.

Class of EEG Test 1 Test 2 Test 1 and Test2
Accepted (%) Accepted (%) Accepted (%)
Delta 86.67 90.0 $0.0
Theta 90.0 90.0 83.33
Alpha 80.0 86.67 76.67
Beta 86.67 86.67 80.0
Mean 85.84 88.34 82.50
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Fig4.4 Anillustration of test 1 and test 2 applied to the residual sequence obtained by the
AR modeling of the alpha class. (a) test 1 for the lack of correlation and (b) test 2
for the lack of sine terms, where gfk) is the normalized cummulative periodogram.
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Exmple #2:

The ARMA algorithm for SPA is applied on a simulated EEG signal
designated as EEG1 shown in Fig. 4.5 with its corresponding power spectral
density. EEG1 has a dominant alpha spectral component at 9.4 Hz anda
weaker delta component at zero Hz and a beta component at 20.1 Hz. The true
values of the spectral components of the EEG signal are shown in Table 4.5.

Different 10 records of the simulated EEG are used. These records are
fitted to an ARMA model with order (6,4). The spectral components for each
record are calculated using the SPA technique and a statistical analysis 1s
performed, where the bias (average deviation of the parameters from their true
value) is obtained as shown in Table 4.5. The estimated PSD of this signal
using the ARMA model is shown in Fig. 4.6 for one record.

As shown in Fig. 4.6, the ARMA model 1s efficiently estimated the PSD
of the given simulated EEG signal. It is clearly resolved the three spectral
components of the signal. Furthermore, it can be seen from Table 4.5 that the
ARMA model estimated the given spectral components with slight bias.

Thus, these results indicate that the ARMA model can be used as an
efficient model to derive the PSD and extract the important features which

describe the EEG signals.
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Table 4.5 Statistics for SPA of the simulated EEG1.

Spectral True value Bias
component
s 0 0.15
Cs 5.3 -1.32
Gs 0.13 0.062
e 94 0.035
o 3.33 -0.34
G, 0.63 0.04
£ 20.1 -0.27
- 6.1 -1.86
G 0.24 0.11
(a)
5 T T T 1 1 T T T L]
0
_5 I 1 ] 1 1 1 1 1 !
50 100 150 200 250 300 350 400 450 500
' ®
T T Ll
F it B S i
15 20 25 30

Fig 4.5 (a)Simulated EEGI signal.

Frequency (Hz)

(b) Its corresponding PSD.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



105

50 T T T T T

1 1 _.—/N
0 5 10 15 20 25 30
Frequency (Hz)

Fig. 4.6 Estimated PSD of the EEGI1 signal in Fig. 4.5 {(a) using ARMA model.
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4.2 ARMA MODELS WITH HOMOMORPHIC FILTERING

The spectral information in the EEG registration plays a crucial role in
the assessment, and hence, spectral estimation is very important in EEG
processing. Among the many spectral estimation approaches, the parametric
approach is found to be an efficient way in this aspect.

The popularity of ARMA spectral modeling based on the linear prediction (LP)
technique 1is due to the efficiency of LP in extracting the structure of the signal.
However, LP-based methods require that the signal to be either minimum or

maximum phase (Makhoul, 1975). The real life signals are neither minimum
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or maximum phase but are of mixed phase nature. The spectral zeros which lie
outside the unit circle in the z-plane, contribute to the excess phase and make
the signal a mixed phase one. This limits the performance of the ARMA
modeling methods based on LP. Fortunately, the mixed phase signals can be
converted to an LP compatible form by homomorphic filtering (HF) (proakis
et al., 1992).

Thus, due to the mixed phase nature of the modeled signal in some
cases, applying ARMA method directly resulted in inaccurate spectral estimate
irrespective of the absence of the zeros outside the unit circle. This indicates
that in order to get accurate spectral estimate of the modeled signal, the LP
based on ARMA spectral modeling must be applied to the minimum phase
equivalent of the signal rather than to the signal directly. This avoids the
problems due to zeros outside the unit circle. To illustrate this idea, the
following procedure is performed in which the mixed phase signal 1s converted
to LP compatible form by homomorphic filtering then pole-zero estimation is
made by LP. Let this method is designated as homomorphic prediction (HP)

method.

4.2.1 HOMOMORPHIC DECONVOLUTION

Homomorphic deconvolution is a general method for separating two
convolved signals by making use of the complex cepstrum to perform this
separation. The complex cepstrum of the sequence y(n) is defined as the

sequence ¢,(n) which is the inverse z-transform of C,(z), where
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Cy(z) =In¥(z) (4.12)
In the frequency domain, if we express Y(@) interms of its magnitude and
phase, say
Y(w) = | Y(w) &% (4.13)
Then
Cyw) = In|Y(w)| + j6(w) (4.14)
The complex cepstrum, as defined above, i1s a useful tool for performing
deconvolution in some applications. To describe this, let us suppose that the
signal y(n) is obtained by convolving the two signals x,(n) and x,(n), that is
y(n) = xi(n) * x3(n) (4.15)
then
Y(z) =Xi(z) Xa(z) (4.16)
The logarithm of ¥(z) is
Cy(z) = InY(z) = In X(z) + In Xy(z)
=Cu @)+ Ca (2) (4.17)
Consequently, the complex cepstrum of the sequence y(n) is expressed as the
sum of the cepstrum of x;(n) and x,(n). That is,
&) = Cuh) + cafh) (4.18)
Thus, we observed that the convolution of the two sequences in the time
domain correspond to summation of the cepstrum sequences in the cepstral
domain. The system for performing these transformations is called a

homomorphic system and is illustrated in Fig. 4.7 (a).
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In some applications, the charactenistics of the cepstral sequences ¢,,(n)
and ¢,(n) are sufficiently different so that they can be separated in the cepstral
domain. That is, if the signals ¢,;(n) and c,(n) occupy disjoint time intervals
then x;(n) and x,(n) can be recovered using an appropriate time domain
window as shown in Fig. 4.7 (b). Once we have the cepstrum sequences ¢, (%)
and c,y(n) by windowing, the sequence x,(7) and x,(n) are obtained by passing
Cx(n)  and cxp(n) through the inverse homomorphic system, shown in Fig. 4.7
(c)-

Thus, if x(n} 1s the convolution of minimum phase component X,,,;,(1)
and maximum component X,..(#), then

Cx(N) = Coin(1) + Cuaef1) (4.19)

Since Cpuin(n) = 0 for n<0 and c,u(n) = 0 for #>0, the complex cepstrum

provides a means of factorizing the signal x(#) into its minimum and maximum

phase component. Also, a mixed phase signal x(n} is converted to 2 minimum

phase signal x,,(n), called the minimum phase equivalent having the same
spectral magnitude. This implies

[ Xpl€')] = LX("))] (4.20)

Since the minimum phase signal x,,(7) is a causal sequence then it can
be reconstructed from its even part, this is due to the fact that the complex
cepstrum of x,,,(n) 1s also minimum phase one. Thus,

Cop() = UMEV[cnin(n)] (4.21)

where U(n} = 0,1, 2 for n<0, n = 0, n>0, respectively.
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Fig. 4.7 (a) Homomorphic system for obtaining cepstrum ¢,{n) of the signal y(h).
(b) Separating the two cepstral components by an appropriate windows
wi(n) and wa(n).
(¢) Inverse homomorphic system for recovering the signal x;(m) and x,(h).
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Since the real part of C,y(z) is the z-transform of the even part of
Cmp(), EV{Cpin(n)] is obtained from log/|X(e”)i]. As aresult, the minimum
phase equivalent x,,(n) can be obtained from the mverse system as shown
above. Thus, the method considered here involves the estimation of ARMA

model of the minimum phase equivalent of the signal.

4.2.2 SIMULATION RESULTS

The performance of the HP method for simulated EEG signals is studied
in the following example,

A simulated EEG signal with two spectral components at 10 Hz and
19.8 Hz is fitted directly (without homomorphic filtering) to an ARMA model
with order (6,4). The estimated PSD using the ARMA model is calculated.
Besides, the locations of the poles and zeros of this model is found as shown in
Fig. 4.8. Let us designate this procedure of fitting the EEG signal directly to
the ARMA model as ‘direct ARMA’ method.

For the HP method, the simulated EEG is first fitted to a homomorphic
filter to produce the minimum phase equivalent component of the EEG signal
then, the resulted signal is fitted to an ARMA model of order (6,4).
Fuﬁhemore, the PSD and the pole-zero locations of the model representing
the minimum phase signal are found as shown in Fig. 4.9.

As shown in Fig. 4.8 (b), some of the model zeros estimated by direct

method are outside the unit circle. As a result, an inaccurate spectral estimation
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i1s obtained as shown in Fig 4.8 (d) from which we can see that the spectral
component of the EEG signal at 19.8 Hz is not resolved by the direct ARMA
method. The evidence of these zeros (which lie outside the unit circle), at least
in this example, indicates that in general the EEG signals is not a minimum
phase signal.

On the other hand, this is not the case when applying the HP method as
shown in Figs. 4.9 (b) and (d), from which we can see that the two spectral
components of the simulated EEG signal are resolved clearly.

Fig. 4.10 shows the PSD estimated by both methods. The difference in
these estimates can be seen more clearly when observing Fig. 4.11 which
shows the pole spectrum and the zero spectrum for both methods. As shown in
Fig. 4.11 (a), the pole spectrum for both methods are almost the same, while
the zero spectrum differs significantly. It is evident that only the zero spectral
estimate is affected by direct estimation and not the pole spectrum. This is
obvious since for a stable signal all the poles lie within the unit circle and
hence the poles satisfy the assumption of LP technique. On other hand, for
zeros no such restriction exists and can lie anywhere in the z-plane. However,
the zeros which lie out side the unit circle will not satisfy the assumption of the
LP and this leads to an inaccurate spectral estimates.

Thus, by applying the ARMA model to the minimum phase equivalent
component of the EEG signal rather than to the original EEG signal, an

accurate spectral estimation is achieved.
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Fig4.8 (a)Original EEG signal. (b) Pole-zero locations of the direct ARMA model.

(c) Original PSD of EEG. (d) Estimated PSD using the direct ARMA.
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Fig.4.9 (a) Minimum phase equivalent component of the original EEG,
(b} Pole-zero locations of the HP model.
(c) Original PSD of EEG.
(d) Estimated PSD using the HP.
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Fig 4.11 (a) Pole spectrum for both methods.  (b) Zero spectrum for both methods.
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4.3 SPIKE DETECTION

In the analysis of biomedical signals, spikes are important for diagnosis.
Sometimes impulses of low occurrence rate are superimposed on predictable
process, as spikes in EEG due to epilepsy. Therefore, the EEG signal is
considered to be composed of background (stationary) waves and paroxysmal
(nonstationary) waves. Spikes can be regarded as nonstationary waves, because
they occur paroxysmally. In such cases, nonstationary components are
symptomatic and are of more interest than the stationary counterpart.

In signal processing techniques, the word “spike” means 1) localized
high frequency and 2) increase in instantaneous energy. The quantitative
description of the amplitude and spectrum of spikes vary from signal to signal,
subject to subject, and it even varies from time to time for the same subject.
This is precisely why the detection of spikes becomes difficult. As the spike
base width increases, energy is concenirated more in low-frequency band
where the energy of the background signal is also located and the detection
becomes more difficult in the frequency domain. Hence, the difficulty of spike

detection increases with the increase in spike width.

Computerized EEG analysis for detecting the nonstationary waves,
especially spike waves of epileptic EEG, has been actively studied. Any
algorithm for spike detection can be divided into two stages; the first stage pre-
emphasizes the spike and the second stage determines the spike positions using
some thresholding technique. Various types of algorithms have been tried for

spike detection (Fender ef al., 1986; Qian ef al., 1988; Ray, 1994).
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In analyzing the EEG effectively, the separation of nonstationary waves
from stationary waves is desirable. Such separation is useful not only for the
detection of the nonstationarities but also for the separate analysis of the two
components. For example, one may wish to analyze the stationary waves in the
frequency domain while the nonstationary waves are analyzed in the time
domain. In the next section, the nonstationary component is separated from the
stationary one using a prediction error filter. It may be separated as an error

signal which is corrupted with carried-over error.

4.3.1 SPIKE DETECTION USING PREDECTION ERROR FILTER

As defined earlier, the prediction and the prediction error sequences for
an ARMA process are given by equations (3.2) and (3.6) respectively. In the z-

domain, the error filter E(z) is defined as

E@)=—7" (4.22)

Since EEG can be regarded as a summation of stationary background
waves and nonstationary paroxysmal waves, the input signal, y(n), is a
summation of two types of signals: the stationary signal, s(), which can be
represented by the ARMA model, and the nonstationary signal, g(n), composed

of random impulsive waves of low occurrence rate. That is,

y(nj) =s(n) + g(n (4_-23)
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The impulses are also represented by the triangular waves of linearly rising and
falling edges and of widthnT (n=2m,m=1,2,3, .... and T is the sampling
interval) having the peaks at n7/2.

Since the nonstationary part consists of random impulsive waves of low
occurrence rate, it may be separated as an error signal which is corrupted with
carried-over error. The latter is removed using signal-inversion technique.

Therefore, the nonstationary components appear as an error signal,
e(n), which is indeed the prediction error sequence. The carried-over error is
defined as:

If a spike exists at 7 and the front end of the prediction sequence just touches
(n-1), the error which is almost equal to the magnitude of the spike, is detected
at n  because the prediction coefficients can not predict sudden rise or fall in
the magnitude of y(n). The error signal is defined here as carried-over error, till
the spike remains within the prediction sequence. This may be cancelled
partially by thresholding and almost completely by the signal inversion.

The nonstationary and stationary components of the input signal y(n) are
separated as follows:

Representing the error filter E(z) as in (4.22), the output of the filter will be
Y(z)E(z). Since y(n) is the linear summation of a predictable signal, s(n), and a
train of random pulses, gfn), | the output of the error filter will be
[S(z)E(z)+G(z)E(z)]. The first part will have very small magnitude (since s(n} is

predictable). The second part corresponds to the output of the error filter when
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the tnput is g(n) and since the latter is not predictable, the entire g(xn) along with
the carried-over errors will appear as output.

Random pulses of low occurrence rate are linearly summed with a
slowly varying background signal as shown in Fig. 4.12 (a). The error signal,
e(n), is shown in Fig. 4.12 (b). The carried-over errors after each spike are seen
to be overshoots and undershoots followed by gradual decay. These spikes can
not be fully recovered simply by thresholding because the height of some of
low-magnitude spikes may be less than the magnitude of the
overshoot/undershoot. A simple way to separate the spike is to invert the error
signal. This i1s shown in Fig. 412 (¢) and is designated as e;(n). It may be
shown that e;(n} is also an error signal of the input y(#) with a reversed sign.

Assume that a threshold (shown as a dotted line in Fig. 4.12 (b), is
gradually lowered till it touches the highest spike at n. With a prior information
of the width of the spikes the corrected error, e.(n), signal (which represents
the separated nonstationary signal containing the spikes) may be written as the
summation of e(n) and e;n) for both sides of the spike, i.e., if the width of the
spike is 2mT, then:

e(n+m+j) = e(n+m+j) + e,(n+tm+j) (4.24)
and
e.(n-m-j) = e(n-m-j) + e;(n-m-j) (4.25)
for the nght-hand side and left-hand side of the spike, respectively, where j =
0, 1,2, .., r,and r depends on the density of the spikes.

The spike itself is recovered as
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Fig. 4.12 Separation of nonstationary and stationary parts using linear prediction error filter
of an ARMA model. (a) y(n): signal with spikes, (b) e(n): prediction error
sequence, (c) &(n): inverted prediction error sequence, (d) e«(n): nonstationary
part, and (&) separated stationary part.

efn+s) =V, /(I+]s|) (4.26)
where, V, is the height of the threshold, and

s=-(m-1), ..., 0, ... .(m-1) 4.27)

()

®)

©

(d)

(e)
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The threshold Iine is then taken to the negative side and the same operation is
repeated. With this type of thresholding, the spikes of higher magnitudes are
detected first and the largest overshoots/undershoots are killed. The spikes of
low magnitudes are then gradually detected by lowering the threshold. If the
rest of the baseline is zero padded, the nonstationary and stationary parts are

almost completely separated as shown in Figs. 4.12 (d) and (e), respectively.

For any detection algorithm, there is a need to evaluate its performance
objectively. The following performance indeces are considered:
1) False-Negative Ratio: The ratio of number of the missed spikes to the actual
number of spikes is the false-negative (FN) ratio and is defined by

_ Number of spikes missed

FN =
Actual number of spikes

2) False-Positive Ratio: The ratio of the number of false-detected spikes to the
actual number of spikes is the false-positive (FP) ratio and is defined by

_ Number of false spikes detected
Actual number of spikes

P

3) Bias: The bias of spike detection in terms of the number of sampling points

1s defined by

. 1 M -
Bias = H;I"f ~n,|
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where n, and 7 are the actual and estimated locations, respectively, of the i

spike, and M is the number of correctly detected spikes. The location of the

maxima of the spike is taken as the spike position.

4.3.2 SIMULATION _RESULTS

To evaluate the performance of the above method, the following
simulation is performed.
The slowly varying background signal s(#) shown in Fig. 4.13 (a) 1s
chosen as
s(n) = sinfan) — sinf2on+6) + sin(4wn)

where @ =2n/75, 8 =n/2. The spike train g(n) is
glmy =Y d(n-k,)
i=1

where r is the number of spikes, d(n-k, is the spike with base width 2m at £

instant, and it represented by

dn-k)= 4=k +3 4, =Dk, + j)+8(m-k, - )]
m

=
where, d(n) is the unit impulse function. The spike position, amplitude, and
sign of the spike are generated by random number generator.

As an example, spike train with six spikes and base width 67 is shown in
Fig. 4.13 (b). The signal with spikes, y(n) = s(n) + g(n), is shown in Fig. 4.13
(c). To detect the spikes, an ARMA model with order (6,4} is used, the
resulting prediction error sequence 1is shown in Fig. 4.13 (d) and the detected

spike sequence is shown in Fig. 4.13 (e).
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Fig. 4.13 (a) The slowly varying signal, (b) Spike train, (c) signal with spike, (d) prediction
error sequence of the ARMA model, and (¢} the detected spikes.
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a) Effect of additive noise:

To demonstrate the performance of this method when the spikes are
corrupted with noise, an additive white Gaussian noise v(n) with zero mean and
variance o’ is added to the signal y(7). The variance o, is adjusted to give the
required SNR.

Table 4.6 shows the performance indeces of this method with different
cases of additive noise (no-noise, and noise at 5 dB and 20 dB) in such a way

that the method is run 20 times for each case.

b) Effect of the spike width:

To demonstrate how the spike width affect the performance of the this
method, the spike width is varied from 27" to 127. A 25 trials are performed and
the average value of these indeces is calculated. The results are shown in Fig.
4.14.

Based on the performance indeces, it can be shown from Table 4.6 that, the
spike detection technique became robust when the signal corrupted by noise. At
low SNR, the FP ratio is high which indicates that the number of the false
spikes detected is increased. While, on the other hand, the FN ratio has a small
value. Thus, a linear combination of both these ratios is used to evaluate the
performance of this method, since either the FP or the FN ratio can be
improved by adjusting the threshold level but at the cost of the other.

Furthermore, it is seen from Fig. 4.14 that the performance indeces

increase .with the increase of spike width, which indicate that, the difficulty of
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the spike detection increases. Since in this case, as the spike width increases,

the energy is concentrated in the low frequency bands where the energy of the

stationary background signal 1s located.

Table 4.6 The performance indeces of the spike detection method for the simulated signal
for both the noiseless case and the noisy case at (5 dB and 20 dB).

Performance No-noise SNR=20dB SNR=5dB
indeces mean + sd mean + sd mean +sd

FP 0.32+0.17 0.36+0.16 424+031

FN 0.25+0.21 026+0.17 0.12+0.11

Bias 261 +063 2,58 +0.55 233+0.37

1 1

Fig. 4.14 Effect of the spike width on the performance indeces of the spike detection method

7 8
spike width

10

1

for the noiseless case. These results are mean performances of 25 trials.

12
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CHAPTER 5

DISCUSSION AND CONCLUSION

In this thesis we are concemed in studying the various concepts and
methods being used for EEG signal analysis. In this respect, we are interested
in how to perform data reduction on an EEG signal while preserving
information over the relevant EEG patterns, this involved the problem of
finding the most appropriate method for feature extraction. For this purpose, it
was found that the ARMA model is considered to be a suitable mathematical
method for describing the EEG signals. Different algorithms dealing with
ARMA modeling were presented in this thesis. For the purpose of studying the
performance of these algorithms, they have been applied to selected examples
of simulated systems. The results indicate that these algorithms are useful in

various applications.

The use of the ARMA modeling in EEG signal analysis provides

practically useful method to quantify EEG signals for several reasons:

i- The EEG signal can be realized in terms of small number of
parameters. Utilizing the ARMA parameters, a considerable degree of data
reduction is achieved. The computation problem is therefore to estimate_ the
model parameters. An important element in this esttmation is to define the

minimum number of parameters to be computed, that is, the model order.
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Selecting the model order is a critical first step toward the goal of

modeling an ARMA process and estimating the model parameters. A new
method for the determination of the model order was discussed in section 3.5.1
In this method, a relationship between the minimum eigenvalue of a covariance
matrix and the MDL criterion is constructed. A table for this relation is
established for the different values of the model order (p,q) for which a search
for the Iocation, where the minimum eigenvalue drops very quickly, is an
indication for the best model order. The performance of this method has been
tested and compared to previous methods, namely, AIC and MDL in section
3.5.2. The comparison was with respect to the effect of the data lengths of the
modeled signal and the effect of the additive noise. The simulation results
presented in section 3.5.2 indicate the superiority of the new ARMA model
order technique over the previous methods. The main advantage of the new
method over the previous ones is that the model order is determined without
requiring prior estimation of the model parameters. Furthermore, it was found
that the new method is better in the sense that it can provide more efficiently
the correct model order estimate for the cases of different data lengths and

different levels of noise.

2- It is possible to derive power spectra and extract the important
features of the EEG signal from the ARMA parameters.
The ARMA modeling is a powerful method in spectral estimation

problem. It is an efficient way in describing the spectrum of the EEG signal
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which contains both peaks and valleys. This is an advantage of the ARMA
model over the AR model which is, in turn, more suitable for signals whose
spectrum has only peaks. Thus, when an AR model is used to represent an EEG
signal, large number of parameters (large model order) is required since many
poles are required to approximate the effect of a zero which produces the valley
in the EEG spectrum. Therefore, the ARMA model in general requires less
parameters than what the AR model require to describe the EEG signal. For
the purpose of comparison, different classes of simulated EEG signals, namely,
delta, theta, alpha and beta, have been fitted to both the ARMA and AR
models. It is found from the simulation results of example #1 presented in
section 4.1.2 that both the models are suitable for describing the EEG signals
since the residual tests, which are used to test the efficiency of the parametric
methods, are accepted when applying both models. It is found that about
83.33% of these classes can be efficiently represented by the ARMA model,
and about 82.5% of them can be efficiently represented by the AR model.
Moreover, it is found that, the ARMA model requires an average order
of (4.81, 2.58) to represent these classes, while the AR model requires an
average order of 8.89. This indicates that the AR model requires a higher
average model order than that of the ARMA model when modeling these
signals.
The performance of any EEG signal analysis method depends to a large
extent on the extraction of relevant features characteristics of the signals. By

means of ARMA modeling, it is possible to interpret the model parameters into
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terms that are closely related to the quantities used in the clinical
neurophysiology. Thus, by fitting an ARMA model to the EEG signal and
using the SPA technique, important features, namely: power, frequency and
bandwidth, that characterize the EEG signal were extracted from the ARMA
parameters. These features are of importance in order to characterize particular
patho-physiological states. The simulation results of examples #2 in section
4.1.2 show how efficiently the ARMA model could derive the PSD of the
EEG signals. Besides, it is found that the ARMA model could be expected to
estimate the spectral component parameters of the EEG signals with a slight
bias. This indicates that, the ARMA model is a useful tool in extracting the

important features of the EEG signals

Another point of discussion is the validity of the ARMA in representing the
EEG signal when it is considered as a mixed phase signal. It has been shown
from the simulation results in section 4.2.2 that the spectral estimates obtained
after filtering the EEG signal by a homomorphic filter is better than the direct
estirﬁaﬁons of the ARMA spectrum. The ARMA model has been fitted directly
(without homomorphic filtering) to a simulated EEG signal with two spectral
components at 10 Hz and 19.8 Hz. The direct ARMA modeling of the EEG
signal has been found to affect the zero spectrum because some of the zeros of
the model lie outside the unit circle, resulting in an inaccurate spectral estimate,
that is, it failed to resolve the spectral component at 19.8 Hz. This problem has

been solved by applying the ARMA model to the minimum phase equivalent
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component of the EEG signal obtained by filtering it by a homomorphic filter.
This ensures that the zeros of the ARMA model lie inside the unit circle
resulting in accurate zero spectral estimation, and therefore, an accurate pole-
zero spectral estimation is achieved, that is, both the spectral components have

been resolved clearly.

3- It is possible to detect EEG transient nonstationarities such as
epileptiform spikes using the inverse ARMA filtering. The ARMA model can
also be used in an inverted form, which leads to the so called inverse filtering
operation. In section 4.3.1, a method for spike detection based on linear
prediction error filter was presented. Spikes are of diagnostic importance in the
biomedical signals. They are described as sharp waves or transients present in a
slowly varying background signal. In the frequency domain, spikes can be
described as high frequency components. As a result, high pass filtering
techniques have been used for the separation of spikes. Because of the high
frequency contents, the spikes appear in the error signal when the linear
prediction filtering scheme is used.

In section 4.3.2, the performance of this method with respect to the
effect of additive noise and spike width has been tested on a simulated signal.
The simulation results presented in section 4.3.2 indicate that the presented
spike detection technique is a useful one specially for the case of high SNR and
when the spikes have short durations. Itis found that, the difficulty of spike

detection increases in the presence of large amount of noise and when the
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width of the spike becomes large, since in this case, the spikes with large width
will have more energy at the low frequency bands where the energy of the

background signal is also located.

For the purpose of introducing the various aspects of ARMA modeling,
the ARMA model is used as an adaptive model to track the structural changes
of the modeled signal. Both adaptive ARMA parameters and adaptive ARMA
roots techniques are discussed in sections 3.4.1 and 3.4.3 respectively.

Furthermore, a new ARMA model dealing with systems with multiple
inputs and delays is presented in section 3.6. This algorithm determines the best
ARMA model to represent a system using its input and output data. It uses the
parameter estimates of an overly specified model to construct a set of lower
order models that are compared via a criterion that makes use of the residual
error norms such as the MDL criteria. Thus, this algorithm automatically
estimates the ARMA model order associated with systems that are allowed to
have multiple inputs and delays. An over-parameterized (i.e., has higher order
than necessary) model are used to infer the order of the best ARMA

parameterization that describe the system.

It can be stated that using ARMA modeling a reasonable computerized
EEG system can be achieved. It is worth to say that, the methods have been
mentioned in this thesis as methods for EEG analysis are just a part of a wide

research area which is still evolving. Although, these methods are believed to
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be good techniques in representing and describing the EEG signals, there might
exist others which are better to some extent. However, ARMA modeling is not
restricted to the processing of EEG signals alone, it can be used in a wide range

of different related fields, e.g., specch analysis, radar, sonar, etc.

Finally, all the presented algorithms have been programmed in
MATLAB and run on a PC. These algorithms were tested on simulated data.
Nevertheless, acceptable results have been achieved which agree with the
particular strategy used in this thesis. It is believed that valuable results will be

achieved if these algorithms are tested on real data.
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APPENDICES

Appendix-A:
Computer programs for ARMA Parameter Estimation

function [A,B,SIG]=mvwen(p,q.N,y)

% —_— —_— ———

% Computer program for Modified Yule-Walker Equation (MYWE) method
%o

% This program implements the modified Yule-Walker equations to
%o estimate the AR parameters of an ARMA process. The MA parameters
% and the white noise variance are estimated by filtering the data

% by an estimate of A(z) and applying Durbin's method.

%

% Input Parameters:

% p The AR order of the ARMA model

% q The MA order of the ARMA model

% N Number of data samples desired

% y(i), i=1:N  The observed signal

Yo

% Output Parameters:

%

% A(), i=l:p  The estimated AR parameters
% B(i), 1i=1:q The estimated MA parameters
% SIG Excitation white noise variance estimate

%

% To compute the autocorrelation estimates
X=y; -
R=corrn(N,p+q+1,0,x,x);
% To solve the Yule-Walker equations
[A,JFLAG]=solveywe(p,a,R);
2% IFLAG is an indicator for the solution of the modified Yule-Walker equations
if (IFLAG==-1)
return
end
% Filter data by estimated A(z) to yield approximate MA time series
y2=czerfltn(p,N,A,x);
% Apply Durbin's method with large order AR model to estimate the MA
% parameters
L=round(N/5);
{B,SIG]=durbinn{q,N,L,y2);

function R=corm(N,LAG,MODE x,y)
for k=0:LAG-1

Nk=N-k; sum=0;

for J=1:Nk
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sum=sum+conj(x(J))*y(J+k),
end

ifMODE==0)
Rk+1)=sum/(N-k);

elseif (MODE~=0)
R(k+1)=sum/N;

end

end

function [A,IFLAG]=solveywe(p,q,R)

IFLAG=0; Eps=10"(-15); AA(1,1)=-R(q+2)/R(q+1});
if{(p==1)
A(D=AA(LD;

return

end
BB(1,1)=R(q)/R(q+1);
RHO=(1-AA(1,1)*BB(1,1))*R(q+1);
iffabs(RHO)<Eps)
IFLAG=-1

retum

end

for k=2:p
¢=-R{g+1+k),

for I=1:k-1
LAG=q+k-I;
if(LAG>=0)
cor=R(LAG+1);

else
cor=conj{R(1-LAG));
end
c=c-AA(Lk-1)*cor;
end

AA(k.k)=c/RHO;

for I=1:k-1
AA(LK)=AA(Lk-1)+AA(k K)*BB(k-Lk-1);
end

if (k==p)

for I=1:p
A(=AA(Lp);

end

return

end

LAG=q-k;

if (LAG>=0)
d=-R(LAG+1);

else
d=-conj(R(1-LAG)),
end

for [=1:k-1
LAG=q-k+l;

if (LAG>=0)
cor=R(LAG+1);

else
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cor=conj{R(1-LAGY));

end

d=d-BB(l.k-1)*cor;

end

BBk k)=d/RHO,

for I=1:k-1
BB(Lk)=BB(Lk-1)+BB(k k)*AA(k-Lk-1);
end

RHO=(1-AA(k K)*BB(k,k))*RHO;
if{abs(RHO)<0)

IFLAG=-1

return

end

end

function y=czerfltn{p,N,A,x)

v(I=x(1);

if(p==1)

for I=p+1:N
y(D=x(D+A(1)*x(I);
end

else

for I=2:p

y(D=x(1};

for J=1:1-1
v(D=A(J)*x(I-J);
end

end

for I=p+1:N
y(D=x(I),

for J=1.p
y{(D=y()+A{J)*x(1-]);
end

end

end

function [B,SIG2]=durbinn(q,N,L x)
% Fit a large order AR model to the data using the autocorrelation method

[A,SIG2]=autcorr{L,N,x);

L1=L+I;

Ap(h=1;

for I=2:L1

Ap(D=A(I-1);

end

% Use the autocorrelation method to generate MA parameter estimates
[B,Pb]=autcorr(q,l.1,Ap);

function [A,SIG2}=autcorr(p,N,x)

% To compute the autocorrelation sequence
R=corm(N,p+1,1,x,x);
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% To solve Yule-Walker equations using Levinson recursion

[A,AA,RHO)=levisonn(p,R);

SIG2=RHOQ{p);

function [A,AA,RHO]=levisonn(p,R)

RHOO0=R(1),

AA(LD=-R2)R(1});
RHO(1)=(1-abs(AA(1,1))"2)*R(1),
A(1y=AA(LL);

if(p==1)

return

end

forI=2p

B=-R(I+1);

for k=1:1-1
B=B-AA(kI-1Y*R{I+1-k);

end

AA(L.T)=B/RHO(I-1);

for k=1:1-1

AA(KD=AAk I-1)+AA(LD*conj(AA(I-k,I-1));
end
RHO(I)=(1-abs(AA(LI))*2)*RHO(I-1);
end

for I=1:p

A(D=AA(Lp);

end
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Appendix-B:

Computer programs for Power Spectral Density

Estimation

function pwsd=nfpsd(p,q.A,B,sig, NEXP)

%

% Computer program to compute the Power Spectral Density (PSD)
% of a parametric model.

% This program computes the PSD values across the normalized

% frequency band [-1/2,1/2], given the parameters of the ARMA

% model.

%

% Input Parameters:

%

% p AR model order (for MA process p=0)

% q MA model order (for AR process q=0)

% AQi), i=lp The AR parameters

% B(1}, i=1:q The MA parameters

% sig Variance of the excitation white noise

% NEXP Power of two which determines number of
% frequency samples desired

%

% Qutput Parameters;

%

% pwsd(i), 1I=1:NEXP Array of the PSD values

Yo

EX=2"NEXF; SIG2=s1g; a=A; b=B,

% To compute the denominator frequency function

if(p~=0)

den(1)=1;

for I=1:p
den(I+1)=a(l),

and

for I=p+2:EX
den(I)=0;

end

den=ffin(den,1, NEXP);
cnd

% To compute the numerator frequency function
if{g~=0)

xnum(1)=1;

for I=1:q
xnum({I+1)=b(I);

end

for I=q+2:EX
xnum(I)=0;

end

xnum={fin(xnum, |, NEXP);
end '
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% To compute the PSD values
% For AR Mode!

if (p==0)

for [I=1:EX
P()=81G2*abs(xnum(1))"2;
end

% For MA Model

elseif (q==0)

for [=1:EX
P({I)=S1G2/abs(den(I))"2;

end

else

% For ARMA Model

for I=1.EX
P(I)=S1G2*(abs(xnum(I))"2)/(abs(den(1))"2);
end

end

% Transpose halves of FFT outputs so that first PSD value is at frequency of -1/2.
for I=1:EX/2
pwsd{I+EX/2)=P(I);
pwsd(l)=P(I+EX/2);

end

function x=ffin(x,INVRS M)

N=2"M;

yv(1)=x(1); for I=2:N num=I-1; J=0; 1=N;
for k=1:M

1=1/2;

if(num>=1)

J=14+27k-1); num=num-1i;

end

end

y(D=x(I+1);

end

% Begin computation of FFT

ldft=1; ndfi=N;

for k=1:M

Idft=2*1dft; ndft=ndfi/2;

for [=1:ndft

for J=1:1dt/2
ARG=-(2*pi*INVRS)*(J-1.)/1dft;
W=cos(ARG)+sin{ARG)*j; np=J+ldft*(I-1); nq=np+idfi/2;
save=y(np)+W*y(nq), y(ng)=y(np)-W*y(nq);
y(np)=save,

end

end

end

for I=1:N

if(INVRS==1])

x(=y(D);

end

tf(INVRS==-1) x(I)=y(I)/N;

end

end
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function pspd=psdarma(A,B,sig,fmax Fs)

% .

Y% Computer program to compute the Power Spectral Density (PSD) of a parametric
% model. This program computes the PSD in the frequency range from 0 to Fmax Hz
Y% with step equal to 0.1.

%

% Input Parameters:

%

% A(l), i=1:p+] The AR parameters

% B(i), t=1:q+1 The MA parameters

% fmax The largest frequency to compute the PSD up to it

% sig Variance of the excitation white noise

% Fs Sampling frequency

%

% Output Parameters:

%

% pwsd(i), i=1:NEXP Array of the PSD values

% R — P ——

=0:0.1:fmax;

H=FREQZ(B,A,{,Fs),
pspd=sig*{abs(H)."2);

Appendix-c:
computer programs for ARMA Order Estimation

function [p,q]=evarma(pmax,gmax,N,M,y)

Yo

% Computer program to compute the order of the ARMA model using

% the eigenvalue method.

%

% Input Parameters:

%

% pmax The maximum AR order of the ARMA model to be considered.
% gqmax The maximum MA order of the ARMA model to be considered.
% N Number of samples desired

% M Large order AR process to estimate the unobservable innovations
% y(i), i=1:N The observed signal (column vector)

Y%

% Output Parameters:

%

% p The estimated AR order of the ARMA model

% q The estimated MA order of the ARMA model

% —_—— —.

% To estimate the unobservable innovations
N=N-1
for n=0:N
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I=n+l;

forI=I'M

if{(n-1)<0}

Y (D=0,

else

Y()=y(n-I+1);

end

end

yy(L,)=-Y;

end

TH=yy; sum2=zeros(M,M}; suml=zeros(M,1);

for I=1:N+1;

suml=sum1+TH(,:)"*y(1); sum2=sum2+TH(l,:Y*TH(l,:);
end

term1=sum1/(N+1); term2=inv(sum2/(N+1)),; B=term2 *term];

for n=0:N

I=n+1; e()=B"*(-yy(1,))); e(h=e()+y(l);
end

e=¢';

% To find candidate models with different orders
for g=0:qmax

ql=gq+1;

for p=0:pmax

pl=p+l1; yp=zeros(N,p+1); I=I;

for J=1:p+1

yp(END=y(1:N-I+1,1); I=1+1;

end

E=zeros(N,q+1), I=1;

for J=1:q+1

E(I'N,D)=e(1:N-1+1,1); I=I+1;

end

D=[yp.E]; Rpq=D"*D;

ElG=eig(Rpq); mineig=min(EIG);
JX{q1,pl)=mineig*(N"(1/N))*(p+q),

end

end

% Row ratio Table
MINg=min(JJ(2,:)./JJ(1,:)); MAorder=1;
for I=1:qmax

Jq(L,))=1J(1+1,:)./J3(1,:); ming=min{Jq(1,)));
if{lming<MINq) MINg=ming; MAorder=I,
end

end

% column ratio Table
MINp=min(JJ(:,2)./J1(;,1)); ARorder=1;
for J=1:pmax

Ip(:,1)=1CLI+1)./11(L,T); minp=min(Jp(:,T));
if{minp<MINp) MINp=minp; ARorder=J,
end

end

p= ARorder;, g= MAorder
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function [p,q]=aicmdl(pmax,qmax,N,y,FLAG)

%__
% Computer program to compute the order of the ARMA model using
% the Akaike Information Criterion (AIC) or Minimum Description
% Length (MDL) methods.
%
% Input Parameters:
%
% pmax The maximum order of the AR part of the ARMA
% model to be considered.
% gmax The maximum order of the MA part of the ARMA
% model to be considered.
% N Number of samples desired
% v(1), =1:N The observed signal
% FLAG Set equal to: 1 for AIC method
% 2 for MDL method
%
% Output Parameters:
%
% p The estimated AR order of the ARMA model
% q The estimated MA order of the ARMA model
%——————— —_—
for p=1:pmax
for g=I:qmax
[A,B,SIG]=mywen(p,q,N,y);
var=SIG;
IfiFLAG=—=1)

cr=N*log(varH2*(p+q);
elseif(FLAG==2)
cr=(N/2)*log(var)+0.5*(p+q)*log(N),

end

if(p==1&q==1)
MINCR=cr;

end

if cr<=MINCR
MINCR=cr; arord=p; maord=gq;

end
end
end

p=arord; g=maord;
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function p=aicar(pmax,N,y)
0/

% Computer program to compute the order of the AR model using
% the Akaike Information Criterion (AIC).

(1]

Yo

Yo Input Parameters:

%

Y% pmax The maximum order to be considered.
% N Number of samples desired

% y(i), I=1:N The observed signal

1)

%o

% Output Parameters;

%

%o p The estimated AR order

Yo

for p=1:pmax

nn=p; th=ar(y',nn}); E=pe(y',th),
var=(std(E))*2; cr=N*log(var)+2*p;
if(p==1) MINCR=¢r;

end

if (cr<=MINCR} MINCR=cr; arord=p;
end

end

end

p=arord;

Appendix-D:
Computer programs for Adaptive ARMA Models

function [A,B]=adarma(p,q,y,N,cs,cp,ff)

%_..--.-

%o Computer program for adaptive ARMA parameters.

%

% Input Parameters:

%

% p AR order of the ARMA model

% q MA order of the ARMA model

% y(1), i=L:N Array for data samples

% N Number of data samples

% O<cs<l Adaptation variable of the adaptive variance of the observed signal.
%  O<cp<l Adaptation variable of the adaptive variance of the prediction error.
% . ff adaptation factor

%

% Output Parameters:

%

% A(i,)), =1:N The estimated Time-varying AR parameters
Y% J=lp
% B(ij), i=I:N The estimated Time-varying MA parameters
Y 7=lq
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vary(1)=0; varpe(1)=0; e(1)=0; c¢{1)=0;e=wgn(N,1);
forn=1:N
sum1=0;sum2=0;

for J=1:p

if(J>=n) A(nJ)=0;

else
A(n.J)=A(n-1,J)-c(n-1)*e(n)*y(n-I);
end

end

fork=1:q

iftk>=n)} B(n,k)=0;

else
B(n.k)=B{(n-1,k)-c(n-1)*e(n)*e(n-k);
end

end

% adaptive prediction error
for I=1:p

if (J>=n) suml=suml;

else
suml=sum!+A(n-1,J)*v{n-J);
end

end

for k=1:q

if (k>=n) sum2=sum2;

else
sum2=sum2+B(n-1,k)*y(n-k},
end

end

e(n)=y{n)+suml+sum2;

% adaptive variances

if{n==1) vary(n)=cs*(y(n)"2),
varpe(n)=cp*(e(n)"2),

else
vary(n)=vary(n-1}-cs*(vary(n-1)-y(n)"2);
varpe(n)=varpe(n-1)-cp*(varpe(n-1)-e(n)"2),
end

% adaption feator

c(n)=fHivary(n);

end
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function [pmag,pph,zmag,zphl=adppz(p.q,y,N,inab,inpz)

%

Y% Computer program for adaptive pole-zero estimation for the ARMA model.
%

Yo Input Parameters:

%

% p AR order of the ARMA model

% q MA order of the ARMA model

% y(i), i=1:N Array for data samples

% N Number of data samples

% inab(i), i=1:p+q The initial values of the ARMA parameters such that the AR
% parameters are located first

% inpz(i), i=1:(p+q)/2 The initial values of the roots of the ARMA model

% represented in polar coordinate such that the radii are
%o located first.

%

% Qutput Parameters:

%

% pmag(ij), i=1:N The estimated magnitudes of the poles

% =1:p/2

% pph(iy), =L:N The estimated phases of the poles

% j=1:p/2

% zmag(i,j), 1=L:N The estimated magnitudes of the zeros

Yo 7=lq2

% zph(i,j), i=1:N The estimated phases of the zeros

% 1=l:q/2

% R ——

yf=zeros(1,N);ef=zeros(1,N); ee=zeros(1,N); winf=1; wz=0.99;w(2)=0.97, P=1*eye(p+q);
ma=p/2;mb=q/2; ab(l,:}=inab; pz(l,:)=inpz; zerojacl=zeros(p,mb); zerojac2=zeros(q,ma);
EG(2,)=zeros(1,p+q);RV(2,:)=zeros(1,p+q);

for t=2:N

n=t-1;

e(t)=y(t)-RV(t,:)*ab(t-1,:)';

Lit, )=((P*EG(t,: )"/ {(w()+EG(t,))*P*EG(t,:)"))";
P=(P-L(t,:))*EGi(t,:)*P)/w(t); -
pz(t,)=(pz(t-1,:)'+L(t,:)*e(t))’; % column
pmag(t,:)=abs(pz(t,1:ma));
zmag(t,:)=abs(pz(t,ma+1:ma+mb));
pph(t,:)=pz(t,ma+mb+1:2¥ma+mb);
zph(t,:)=pz(t,2*ma+mb+1:2*ma+2*mb);

% calculate the parameters from the roots
a(t,:)=c2par(p,pmag(t,:),ppht,:)};
b(t,:)=c2par(q,zmag(t,:),zph(t,’));
ab(t,:)=[a(t,:),b(t,])];

% to calculate the jacobian

nl=p;
[JACRP1,JACPHP1]=jacobi(a(t,;),p,ma,pmag(t,:),pph(t,:));
JACRP=JACRP1!(2:nl+1,:);
JACPHP=JACPHP1(2:nl1+1,:):

nl=q;

[JACRZ1,JACPHZ 1]=jacobi(b(t,:},q,mb,zmag(t,:),zph(t,:));
JACRZ=JACRZI1(2:nl+1,3),
JACPHZ=JACPHZ1(2:n1+1.’);
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% construct the jacobian matrix
JACZP=[JACRP,zerojacl, JACPHP,zerojac;zerojac2, JACRZ zerojac2 JACPHZ],
ee(t)=y(t)-RV(t,)*ab(t,:); yyflt,)=grv(q,n,yD);
vilt)=y(1)-b(t,:)*yyflt,:)'; EEfit,:)=grv(q,n,ef);
cf{t)=ce(t)-b(t,:)*EEf(t,:)";

for I=1:p

if(n-1+1)<0

Y I{1)=0; Y2(I)=0;

else

Y 1{(D=y(n-1+2); Y2(D)=yf(n-1+2);

end

end

for [=1:q

if((n-1+1)<0) Y3(I)=0; Y4(1)=0,

else

Y3(D=ee(n-1+2); Y4(I)=ef(n-1+2);

end

end

RV(t+1,:)=[-Y1,Y3]; RVF(t+1,:)=[-Y2,Y4],
EGI=JACZP'*RVF(i+1,:)", EG(t+1,:)=EGI",
w(t+=winf-(winf-w(t))*wz,

end

function [JACR,JJACPH]=jacobi(A,nl,mI,mag.ph)

A=[L,A]; JACR(1,:)=zeros(1,m1l);

JACPH(1,:)=zeros(1,ml);

k=1:ml;

JACR(2,:}=-2*cos(ph{k)); JACPH(2,:)=2*mag(k).*sin{ph(k));

for [=3:n1+1

for k=1:ml

JACR(Lk)=2*mag(k)*cos(ph(k))* JACR(I-1.k)-(ph(k)*2)*JACR(I-2 k)-2 *cos(ph(k)) *A(I-
+2*mag(k)*A(I-2);

JACPH(L k)=2*mag(k)*cos(ph(k))*JACR(I-1,k)-(ph(k)"2)*JACR(I-
2 ky+2*mag(k)*sin(ph(k))*A(I-1);

end

end

function al=c2par(m,magl,phl})

aa=zeros(m,m/2);

for J=1:m/2

for I=1:2*]

ifJ=1&J==1) aa(1,J)=-2*mag1(J)*cos(ph1(J));
elseif(J==1&[==2) aa(l,J)=mag1(1)"2;

elseif(I==1) aa(l,))=aa(l,J-1);

elseif(I==2) aa(I,J)=aa(l,J-1)-2*mag!(J)*aa(I-1,3-1)*cos(ph1(J));
else
aa(l,J)=aa(I,J-1)-2*magl(J)*aa(I-1,J-1)*cos(phl(1))+mag1(J)*2*aa(1-2,]-1),
end

end

end
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for I=1'm

al(l)=aa({l,n/2);

end
function Y=grv(M,n,y1)

for I=1:M
if{(n-1)<0) Y(I)=0,
else
Y(I)=yi{n-1+1),
end

end
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Appendix-E:

Computer program for ARMA modeling of systems
with multiple inputs and delays

function [p,ql,s1,q2,s2,par]=apr(pmax,qlmax,q2max,st,s2,N,x1,x2,e,y)

Y
Yo
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Computer program for ARMA modeling of systems with multiple

inputs and delays.

Input Parameters:

pmax The maximum AR order of the ARMA
model to be considered.

qlmax The maximum MA order of the first input
to be considered.

g2max The maximum MA order of the second input
to be considered,

N Number of samples desired.

sl The initial delay of the first input signal

52 The 1nitial delay of the second input signal

x1(1), iI=I:N The first input signal
x2(1), 1=1:N The second input signal
e(1), 1=1:N Additive white noise

¥(i), =1:N The observed signal

Output Parameters:

p The estimated AR order of the ARMA model
gl The estimated MA order of the first input

q2 The estimated MA order of the second input
sl The estimated delay of the first input

52 The estimated delay of the second input

par(1), 1=1:ql+q2+p The estimated parameter values arranged as
follows: MA parameters for the fist input,
MA parameters for the second input and the
AR parameters.

%

q=qlmax; q2=q2max; p=pmax; x=x1'; x2=x2"; y=y'; xp=zeros(N,q+1);sig2=(std(e))"2; I=1;

for J=1:q+1
xp(EN,D=x(1:N-I+1,1); =I+1;
end

xp2=zeros(N,q2+1); I=1;

for J=1:q2+1
xp2(END)=x2(1:N-I1+1,1); I=1+1;

en

d

yp=zeros(N,p); I=1;

for J=1:p
yp(IND=y(L:N-I+1,1); I=]+1;
end

yl

=yp(LN-1,2); y2=[zeros(1p);yl];
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D=[xp,xp2,y2], x=x';, y=y,
pv=inv(D'*D)*D'*y", " v=inv(D'*D)*D'*e"

% AR parameters removal
kmax=pmax+qlmax-sl+q2max-s2+2;

L=1; k=kmax; mtnpl=k; ARord=pmax;
acv=sig2*inv(D'*D); acvl=acy;
pe(L,)=(y'-D*pv)"; nors=norm(pe(L,:))"2;
[q.r1=gr(D);

pvl=pv; mind 1=(1+k*(log(N)/N))*(nors/N);

for I=1:pmax
mdll(k)=(1+k*(log(N)/N))*(nors/N),
if{imdl1{(k)<=mindl)

mindl=mdl1(k}; mtnp 1=k;

pvl=pv(l:k,1); D1=D{,1:k); acvi=acv(;,1:k}; L2=L;

end

% remove one parameter

ql=q; k=k-l1; L=L+l;

[g.r]=qr(D(:,1:k)); clear r
pe(L,.)=(pe(L-1,.)+ql(;,k+1)*q1 (,k+1)*y'),;
nors=norm{pe(L,:})"2;

pv(L:k, D=inv(D{;, 1:k)*D(:;,1:k))*D(;, L :k)"™*v",
v(1:k,)=inv(D({;, 1LK)*D{, 1:k)*D(;, 1:k) *e',
acv=sig2*inv(D(;,1:k)*D(:,1:k)),

end

num!=kmax-mtnpl; ARord=pmax-numl;

% calculating the SNR of MA parameters
for I=1:mtnp1

nm(I)=acvI{L]I);

end

pvls=pvl'*2; ratio=pvls./nm;
SNR=ratio.”0.5;
SNRMAI1=SNR(1,1:qlmax+1),
SNRMA2=SNR(1,qlmax+2:mtnpl-ARord);

% MA parameters removal
k=mtnpl; L3=1;
pe2(L3,)=(y"-D1*pvl)’;
nors=norm(pe2(L3,:)"2;
mind2=(1+k*({log(N)/N))*(nors/N);
pv2=pvI(l:k,1);[q2,r]=qr(D1);
clearr

for I=1:mtnpl-1
md12(k)=(1+k*(log{N)/N))*(nors/N),
if{md]2 (k)<=mind2)

mind2=mdI2(k), mtnp2=k;
pv2=pvi(l:k,1); D2=DI1{;,1:k);
acv2=acv1(:,1:k);

end
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% remove one parameter

q3=q2; k=k-1; L3=L3+I,

[q2,r]=qr(D1(;,1:k)), clear r
pe2(L3,:)=(pe2(L3-1,:Y+q3( . k+1)*q3(;,k+1)"*y");
nors=norm(pe2(L3,:))"2;

pvl{L:k 1)=inv(D1(,,L:k)*D1(, L:k)*D1({;, 1 :k)*v",
vI(1:k,)=mv(DI{:, LkY*DI1(;, L:k)}*DI(:, 1:k)*e’;
acvl=sig2*inv(D1({;,1:.k)"*D1(:;,1:k)),

end

MAord=mtnp2-ARord+1;
pqr=pv2,

SNRT=[SNRMAI1,SNRMAZ2];
Ji=sort(SNRT),

k=length(j));

forI=1k

maxsnr(I)=jj(k);

k=k-1;

end

zIl=1; z2=1;

for I=1:MAord

for k=1:qlmax
if(bcoef(l)==SNRMA1(k))
maxb1{z1)}=SNRMAI1(k); ind1{z]1)}=k; z1=z1+1;
end

end

end

for [=1:MAord

for k=1:q2max

if(bcoef{I)==SNRMA2(k}))
maxb2(z2)=SNRMA2(k);ind2(z2)=k; z2=22+1;
end

end

end

[dl,d2]=max{maxbl); [d3,d4]=max(maxb2};
[rl,r2]=min(maxbl); [r3,r4]=min(maxb2);
ql=ind1(d2); sI=ind1{12); q2=ind2(d4), s2=ind2(r4);
p=ARord; par=pv2;
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Appendix-F:
computer program for Parametric Methods
efficiency
function []=residtes(p,q,N,y)
% — e e e —
% Computer program to evaluate the efficiency of the parametric models for both
% ARMA and AR models.
%
% Input Parameters:
%
% The AR order of the ARMA model

P
% q The MA order of the ARMA model (q=0 for an AR process)
N

% Number of data samples
% y(i), 1=1:N The observed signal

%

suml=0; sum2=0;51=0; s2=0;

% For AR Model

1f(q==0) nn=p; th = ar(y',nn);

else

%) For ARMA Model

nn=[p,q]; th=armax(y',nn),

end

% Test for the lack of correlation terms
M=N/2; El = pe(y',th);

r=covf(El,M); var=(std(E1))"2;
m=r/var; limit=1.96/sqrt(N);

% 2) Test for the lack of sine terms
k2=1.35;

for k=1:N/2

w(k)=2*pi*k/N;
tole1(k)=(2*k/N)+k2/sqrt((N/2)-1);
tole2(k)=(2*k/N)-k2/sqrt((N/2)-1),
end

for [=1:N/2

for JI=1:N/2
suml=suml+E1({J)*cos(w(I)*]);
sum2=sum2+E1(N*sin{w(I}*]);

end

term1=((2/N)*sum1)"2; term2=((2/N)*sum2)"2;
sqc()=term1-+term2; suml=0;sum2=0;
end

for I=1:N/2

sl=s1+sqc(l);

end

for K=1:N/2

for I=1:K

s2=s2+sqe(I);

end

g(K)=s2/s1; s2=0;

end :
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% To plot the two tests
figure(l)

for I=1:M

limit2(I)=limit;

end

s=1:M;
plot(s,limit2,s,-limit2,s,m);
figure(2)

k=1:N/2; toll=tolel; tol2=tole2,
plot(k,tol1,k,tol2 k.g)

xlabel('f (Hz)'); ylabel(' g(k));

Appendix-G:
computer program for Simulating EEG signhals

function [EEG,PF]=EEGSIMN(M,F,B,r,N,Fs,fmax)

Y%

% Computer program to simulate different types of EEG stgnals with certain
% characteristics. The simulated EEG signal is represented by a summation of
% second order AR series.

% This simulation technique is described by Weiss (1986).

%

% Input Parameters:

%

% M Number of resonances

Y% F(@), i=I:M Frequency associated with each resonance

% B(i), i=1:M Bandwidth associated with each resonance

% (i), i=1:M Relative amplitude associated with each resonance

% N Number of samples desired

% Fs Sampling frequency

% fmax The largest frequency to compute the PSD up to it

%

% QOutput Parameters:

%

% EEG(i), i=1:N The simulated EEG signal
% PF(i), i=1:Fr  The power spectral density of the EEG signal

Yo

sum2=0; sum3=0; sumd=zeros(1,N); T=1/Fs; Fr=fmax,
for I=1:M

a2(D=0.06*B(I)-0.9,
al(D=(4*a2(D/(a2(D)-1))*cos(2*pt*F(I)*T),
D(D=ps(al(D),a2(),F(1),T);
yl(D=(1-a2(D))"2-a1(D)"2; y2(T)=(1+a2(1))/(1-a2(D)),
suml(D)=r()*D(D*y 1{D*y2(I);

end

for I=1:M

sum2=sum2-+r(I}; sum3=sum3+suml(I);

end
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kn=sum2/sum3;

for I=1:M

a3()=sqrt(kn*r(I)*D(1));

end

% To generate a second order AR series
suml=zeros({1,N); x=wgn(N,1);

for I=1:M

A=[1,-al(l),-a2()]; B=a3(l);
yv(l,:)=filter(B,A,x); suml=suml+yy(L,:);
end

EEG=suml;

% To compute the PSD of the simulated EEG signal in the frequency
% range from 0 to Fr Hz with step 0.1 as illustrated in the function eegpsd.

PF=eegpsd(al,a2,a3,M,T,Fr),

function w=wgn(N,VAR)

% =

% Computer program to generate White Gaussian noise.

%

% Input Parameters:

%

% N Number of white noise samples desired
% VAR Variance of white noise samples desired
%

Yo Output Parameters:

%

% w(i), i=1:N The generated white noise signal

%__ _______________ N
M=N;

for I=1:M

w(I)=rand;

end

L=M/2;

for I=1:L

ul=w(2*I-1); u2=w(2*I);
temp=sqrt(-2*log(ul));
w(2*I-1)=temp*cos(2*pi*u2)*sqrt(VAR),
w(2*D)=temp*sin(2 *pi*u2)*sqrt(VAR),
end

function PF=cegpsd(al,a2,a3,M,T,Fr)
fr=0:0.1:Fr; sum5=zeros(1,length(fr));
for I=1:M
DD(1,:)=ps(al{I},a2(I).fr,T);
pp(L,:)=(2*T*a3(1)"2)./DD(,);
sum35=sum35+pp(L,:);

end

PF=sum3;

function D1=ps(A1,A2.f1,T)
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for J=1:length(fr)
DI())=1+A172+A2"2-2*¥A1*(1-A2)*cos(2¥pi*fr(J)*T)-2*A2*cos(4*pi*fr(J)*T),
end

Appendix-H:
Computer program for Spectral Parameter Analysis

function [fr,BW pown]=spcomp(p,q,A,B,sig,Fs)

%

% Computer program to compute the spectral component parameters of an EEG signal
% using the Spectral Parameter Analysis (SPA) technique. This program computes the
% frequency, bandwidth and power of the various resonances in the signal.

%

% Input Parameters:

%

% p The AR order of the ARMA model

% q The MA order of the ARMA model

% A(i), i=1:;p+1  The AR parameters
% B(1), i=l:g+1  The MA parameters

% sig Variance of the excitation noise

% Fs The sampling frequency

%

% Output Parameters:

%

% fr(1), 1=1:p The estimated spectral component frequencies

% BW(i), i=1:;p The estimated spectral component bandwidths

% pown(i), i=l:;p The estimated spectral component relative powers

% R

sum=0; T=1/Fs; aa=A; bb=B; pr=roots(A), zr=roots(B), a=A(1,2:p+1);
% for an AR model

if(size(B)==1)b=1;

else

b=B(1,2:q+1);

end

% To compute the frequencies and bandwidths of the various resonances
for k=1:p

fr(k)=(1/(2*pi*T))*imag(log(pr(k)));

if{fr(k))==0

BW(k)=-log(abs(pr(k)})/(2*pi*T),

else

BW(k)=-log(abs(pr(k)))/(p1*T);

end -

end

% to compute the relative powers of the various resonances
fork=I:p

mul=1;

for J=1:p

ifJ~=k)

mul=mul*(pr(k)-pr(J})*(1/pr(k)-conj(pr(J)));

end
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end
rescg k=1 /(pr(ky*(pr{k)-con(pr(k)))*mul);
for I=1:p

if{imag(pr(I))==0)

pow(I)=sig*abs(real(res(I))). sum=sum+pow(l):
clsetfimag(pr(I))>0)
pow(1)=2*sig*abs(real(res(l))); sum=sum+pow(I);
end

end

pown=pow/sum,;

Appendix-I:
Computer program to find the Minimum Phase
Component of a Signal

function mphy=minph(N,y)

% —
% Computer program to find the minimum phase of a given signal

Y%

% Input Parameters:

%

% N Number of data samples

% y(1), 1=1:N The given signal to find its minimum phase component
%

% QOutput Parameters:

%

% mphy(i), i=1:N The minimum phase signal

%

mphy= zeros(1,N);

x1 = real(ifft{log(abs(fii{yHN);
if{rem(N,2)==0)

w = [1; 2¥ones((N/2)-1,1) ; 1; zeros((N/2}-1,1)];
else

w = [1; 2%ones((N/2)-1,1) ; zeros((N/2)-1,1)];
end

x2=w.*x1"; x3=ffi(x2);

xd=exp(x3), x5=iffi(x4); mphy=real(x5)’;
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Appendix-J:
computer program For spike detection

function ST=spikes(N,r,sw)

%

% Computer program to generate spike train signal. The spike has
% a width of nT (n=2sw, sw=1,2,3,.., and T is the sampling

% interval). The spike position, amplitude and sign of the spikes
% are generated by a random number generator.

%

% Input Parameters:

%

% N Number of samples desired for the spike signal
% r Number of spikes

% sw spike width

%

% Output Parameters:

%

% ST(i), i=1:N  The generated spike train signal

%

qg=sw: deltal=zeros(1,N); delta2=zeros(1,N); dl=zeros(1,N);d2=zeros(1,N),

for I=1:r

s=round(rand); amp(I)=(-1)"s*(2.5+5*rand), pos(I}=2*qq+(N-4*qq)*rand;
end

pos1=sort(pos); pos(1)=pos1(1); pos(r)=pos1(r), dif=round((pos(r)-pos(1))/r);
for 1=2:r-1
pos()=pos(l-1)+((dif/2)+dif*rand);
end

pos=round(pos);

forn=1:N

for k=1:r

if n==pos(k) deital(n)=amp(k};
end

end

end

for n=1:N

for k=L:r

for m=1.qq

if n==pos(k)-m
d1(n)=(amp(k)*(qq-m)/qq),

end

end

for m=1:qq

if n==pos(k)+m
d2(n)=(amp(k)*(qq-m)/qq);

end

end

delta2(n)=d(n)+d2(n);

end

end ‘

ST=deltal+delta2;

4
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function [spik,FP,FN,BIAS]=spikdet{p,q,N,y,sw)

%

% Computer program for spike detection using linear prediction error filter. The spike
% detection technique is evaluated using the performance indeces, namely, false
% positive ratio, false negative ratio and the bias.

%

% Input Parameters:

%

Y% p The AR order of the ARMA model

% q The MA order of the ARMA model

% N Number of data samples

% v(i), =1:N Signal contains both the stationary and

% nonstationary (spike) signals

% sW spike width

%

% Output Parameters:

%

% FP False positive ratio

% FN False negative ratio

% BIAS The bias of spike detection

% spik(1), i=1:N  The recovered spike signal

%

qq=sw; spkN=0; nn=[p,q]; TH1 = armax(y',nn);
El = pe(3y', THI); E2=-El; =2; kk=1;

for I=1:2*qq-1

s(kk)=-(gqq-I); kk=kk+1;

end
spik=zeros(1,N), EE1=El,
z=0, flag=1;

while(flag==1)
{ps.indp]=pnscp(E1'N,1); [ml,ind]=max(ps);
if{z==1)

Emax=m]l;

end

z=z+]; n=indp(ind),
if{El{n+qg/2+1)<0)
if{rem(qq,2)=0)
posl(z)=n+(qq/2),
else
posl(z)=n+{qq-1)/2;
end

else
if(rem(qq,2)==0) pos1(z)=n-(qq/2);
else
posl(z)=n-(qq-1)/2;
end

pos1(z)=n-qq;

end

if(m1<Emax/2)
flag=0;

end
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El(n-qq:n+qq,l)=zeros(2*qq+1,1);

end

r=z; E1=EEl; pamp=r, namp=r; pos=posl;
E1=EEl; L=1; pspk=0; nspk=0; d1=0;
for k=1:pamp
[ps,indp}=pnsep(ET',N,1);
[vr,ind]=max(ps); n=indp(ind),
xx=EE1(n-qq:n+qq, 1) xxmin=min(xx);
while{vr<abs(xxmin))
El(n-qq:nt+qq,1)=zeros(2*qq+1,1);
[ps3,indp3]=pnsep(E1"N,1);
[vr,ind3]=max(ps3); n=indp3(ind3),
xx=EEI(n-qq:n+qq,1); xxmin=min(xx);
end

spos(L)=n;

for I=1:length(s)
spik(nt+s(I))=vr/(1+abs(s(I))):
El(nts{))=0;

if s(I)==0

spkN=spkN+1;

dl=dl+1;

spkpos(d1)}=n;

end

end

for J=0:rr

spik(n+qq+J)= EEl(n+qq+J)+E2(nt+qq+l);
spik(n-qq-J)=EE1(n-qq-J)}*E2(n-qq-J);
El(nt+qq+J)=0; E1{n-qq-J)=0;

end

L=L+1; pspk=pspk+1;

end

El=EEI; L=1; d2=0;

for k=1:namp

[ns,indn]=pnsep(E1",N,2); {vr,ind]=min(ns);

spos{L+pspk)=indn(ind); n=spos(L~+pspk);
for 1=1:length{s)
spik(n+s(I))=vr/(1+abs(s(I)));
El(n+s(1})=0;

if s(I)==0

spkN=spkN+1;

d2=d2+1;

spkpos(d1+d2)=n,

end

end

for J=0:rr

spik(n+qq+J)= EEl(ntqq+])+E2(n+qq+J);
spik(n-qq-J)=EE1(n-qq-J1)+E2(nqq-J},
El{n+qq+J)=0; E1(n-qg-J)=0;

end

L=L+1; nspk=nspk+1,

end

spkpos=spkpos+2; I=1; NTS=0;

for I=1:spkN

fork=1r

if spkpos(I)==pos(k)

156
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NTS=NTS+I;

cspos(ly=pos(k);

[=1+1;

end

end

end

FN=(r-NTS)/r; FP=(spkN-NTS)/r;
sumb=0;

for I=1:NTS
sumb=sumb+abs(pos(I)-spkpos(I));
end

BIAS=sumb/NTS:

function [pns,ind1]=pnsep(em,N, flag)

J=1;

if flag==

forn=1:N

if em(n)>=0

pss(J)=em{n); indp(J)=n; I=J+1;
end

end

pns=pss; ind1=indp;

end

if flag==

for n=1:N

if em{n)<0

ns(J)=em(n); indn(J)=n; J=J+1;
end

end

pns=ns; ind1=indn;

end
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